3D computational grains with embedded fibers for the direct micromechanical modeling of fiber composites
For the integrated design of composite material and structures, it is essential to have an effective micromechanical numerical tool to link macroscopic material properties to microstructural configurations. In this paper, 3D computational grains (CGs) with embedded fibers are proposed for the first...
Gespeichert in:
Veröffentlicht in: | Acta mechanica Sinica 2023-11, Vol.39 (11), Article 423179 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Acta mechanica Sinica |
container_volume | 39 |
creator | Huang, Yezeng Wang, Junbo Li, Mingjing Wang, Guannan Dong, Leiting Atluri, Satya N. |
description | For the integrated design of composite material and structures, it is essential to have an effective micromechanical numerical tool to link macroscopic material properties to microstructural configurations. In this paper, 3D computational grains (CGs) with embedded fibers are proposed for the first time, for the direct micromechanical modeling of fiber composites. The microstructure of a unidirectional lamina with random fibers can be assembled by many CGs, and the stiffness matrix of each CG with an embedded fiber can be directly computed by combining two new algorithms. On one hand, a new kind of Trefftz trial displacement field based on scaled cylindrical harmonics is independently assumed, in addition to inter-elemental displacement interpolations with surface nodal degrees of freedom (DoFs). On the other hand, a new kind of multi-field boundary variational principle is proposed to relate independently assumed Trefftz fields to nodal DoFs and to derive the stiffness matrix. Numerical examples demonstrate that without the traditional fine meshing, accurate distribution of micro-stresses in a representative volume element (RVE) with thousands of fibers can be directly computed, and the equivalent orthotropic properties of fiber composites can be predicted. This is also the first time that a three-dimensional finite element with an embedded fiber is developed. |
doi_str_mv | 10.1007/s10409-023-23179-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2856980454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856980454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-b966e3da6e804740bb24f191df0d7debddf58533260f737dd7ca654702e22c6f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKt_wFXAdTSPmWRmKfUJBTe6Dpnkpk3pTGqSov57x47gztXdfOfAPQhdMnrNKFU3mdGKtoRyQbhgqiWfR2jGJKuIYEweoxmtpSJKseYUneW8oVRIptgMrcUdtrHf7YspIQ5mi1fJhCHjj1DWGPoOnAOHfeggZexjwmUN2IUEtuA-2BR7sGszBDuifXSwDcMKRz8RB3XMoUA-RyfebDNc_N45enu4f108keXL4_PidkksV7SQrpUShDMSGlqpinYdrzxrmfPUKQedc75uaiG4pF4J5ZyyRtaVohw4t9KLObqavLsU3_eQi97EfRofy5o3tWxHbV2NKz6txgdyTuD1LoXepC_NqP4pqqeieiyqD0X15wiJCcrjeFhB-lP_Q30D-vN7HA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856980454</pqid></control><display><type>article</type><title>3D computational grains with embedded fibers for the direct micromechanical modeling of fiber composites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Yezeng ; Wang, Junbo ; Li, Mingjing ; Wang, Guannan ; Dong, Leiting ; Atluri, Satya N.</creator><creatorcontrib>Huang, Yezeng ; Wang, Junbo ; Li, Mingjing ; Wang, Guannan ; Dong, Leiting ; Atluri, Satya N.</creatorcontrib><description>For the integrated design of composite material and structures, it is essential to have an effective micromechanical numerical tool to link macroscopic material properties to microstructural configurations. In this paper, 3D computational grains (CGs) with embedded fibers are proposed for the first time, for the direct micromechanical modeling of fiber composites. The microstructure of a unidirectional lamina with random fibers can be assembled by many CGs, and the stiffness matrix of each CG with an embedded fiber can be directly computed by combining two new algorithms. On one hand, a new kind of Trefftz trial displacement field based on scaled cylindrical harmonics is independently assumed, in addition to inter-elemental displacement interpolations with surface nodal degrees of freedom (DoFs). On the other hand, a new kind of multi-field boundary variational principle is proposed to relate independently assumed Trefftz fields to nodal DoFs and to derive the stiffness matrix. Numerical examples demonstrate that without the traditional fine meshing, accurate distribution of micro-stresses in a representative volume element (RVE) with thousands of fibers can be directly computed, and the equivalent orthotropic properties of fiber composites can be predicted. This is also the first time that a three-dimensional finite element with an embedded fiber is developed.</description><edition>English ed.</edition><identifier>ISSN: 0567-7718</identifier><identifier>EISSN: 1614-3116</identifier><identifier>DOI: 10.1007/s10409-023-23179-x</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</publisher><subject>Algorithms ; Classical and Continuum Physics ; Composite materials ; Computation ; Computational Intelligence ; Engineering ; Engineering Fluid Dynamics ; Fiber composites ; Fibers ; Grains ; Material properties ; Mathematical analysis ; Mathematical models ; Microstructure ; Research Paper ; Stiffness matrix ; Theoretical and Applied Mechanics</subject><ispartof>Acta mechanica Sinica, 2023-11, Vol.39 (11), Article 423179</ispartof><rights>The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-b966e3da6e804740bb24f191df0d7debddf58533260f737dd7ca654702e22c6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10409-023-23179-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10409-023-23179-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Huang, Yezeng</creatorcontrib><creatorcontrib>Wang, Junbo</creatorcontrib><creatorcontrib>Li, Mingjing</creatorcontrib><creatorcontrib>Wang, Guannan</creatorcontrib><creatorcontrib>Dong, Leiting</creatorcontrib><creatorcontrib>Atluri, Satya N.</creatorcontrib><title>3D computational grains with embedded fibers for the direct micromechanical modeling of fiber composites</title><title>Acta mechanica Sinica</title><addtitle>Acta Mech. Sin</addtitle><description>For the integrated design of composite material and structures, it is essential to have an effective micromechanical numerical tool to link macroscopic material properties to microstructural configurations. In this paper, 3D computational grains (CGs) with embedded fibers are proposed for the first time, for the direct micromechanical modeling of fiber composites. The microstructure of a unidirectional lamina with random fibers can be assembled by many CGs, and the stiffness matrix of each CG with an embedded fiber can be directly computed by combining two new algorithms. On one hand, a new kind of Trefftz trial displacement field based on scaled cylindrical harmonics is independently assumed, in addition to inter-elemental displacement interpolations with surface nodal degrees of freedom (DoFs). On the other hand, a new kind of multi-field boundary variational principle is proposed to relate independently assumed Trefftz fields to nodal DoFs and to derive the stiffness matrix. Numerical examples demonstrate that without the traditional fine meshing, accurate distribution of micro-stresses in a representative volume element (RVE) with thousands of fibers can be directly computed, and the equivalent orthotropic properties of fiber composites can be predicted. This is also the first time that a three-dimensional finite element with an embedded fiber is developed.</description><subject>Algorithms</subject><subject>Classical and Continuum Physics</subject><subject>Composite materials</subject><subject>Computation</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Fiber composites</subject><subject>Fibers</subject><subject>Grains</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Research Paper</subject><subject>Stiffness matrix</subject><subject>Theoretical and Applied Mechanics</subject><issn>0567-7718</issn><issn>1614-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWKt_wFXAdTSPmWRmKfUJBTe6Dpnkpk3pTGqSov57x47gztXdfOfAPQhdMnrNKFU3mdGKtoRyQbhgqiWfR2jGJKuIYEweoxmtpSJKseYUneW8oVRIptgMrcUdtrHf7YspIQ5mi1fJhCHjj1DWGPoOnAOHfeggZexjwmUN2IUEtuA-2BR7sGszBDuifXSwDcMKRz8RB3XMoUA-RyfebDNc_N45enu4f108keXL4_PidkksV7SQrpUShDMSGlqpinYdrzxrmfPUKQedc75uaiG4pF4J5ZyyRtaVohw4t9KLObqavLsU3_eQi97EfRofy5o3tWxHbV2NKz6txgdyTuD1LoXepC_NqP4pqqeieiyqD0X15wiJCcrjeFhB-lP_Q30D-vN7HA</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Huang, Yezeng</creator><creator>Wang, Junbo</creator><creator>Li, Mingjing</creator><creator>Wang, Guannan</creator><creator>Dong, Leiting</creator><creator>Atluri, Satya N.</creator><general>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>3D computational grains with embedded fibers for the direct micromechanical modeling of fiber composites</title><author>Huang, Yezeng ; Wang, Junbo ; Li, Mingjing ; Wang, Guannan ; Dong, Leiting ; Atluri, Satya N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-b966e3da6e804740bb24f191df0d7debddf58533260f737dd7ca654702e22c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classical and Continuum Physics</topic><topic>Composite materials</topic><topic>Computation</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Fiber composites</topic><topic>Fibers</topic><topic>Grains</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Research Paper</topic><topic>Stiffness matrix</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yezeng</creatorcontrib><creatorcontrib>Wang, Junbo</creatorcontrib><creatorcontrib>Li, Mingjing</creatorcontrib><creatorcontrib>Wang, Guannan</creatorcontrib><creatorcontrib>Dong, Leiting</creatorcontrib><creatorcontrib>Atluri, Satya N.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mechanica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yezeng</au><au>Wang, Junbo</au><au>Li, Mingjing</au><au>Wang, Guannan</au><au>Dong, Leiting</au><au>Atluri, Satya N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D computational grains with embedded fibers for the direct micromechanical modeling of fiber composites</atitle><jtitle>Acta mechanica Sinica</jtitle><stitle>Acta Mech. Sin</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>39</volume><issue>11</issue><artnum>423179</artnum><issn>0567-7718</issn><eissn>1614-3116</eissn><abstract>For the integrated design of composite material and structures, it is essential to have an effective micromechanical numerical tool to link macroscopic material properties to microstructural configurations. In this paper, 3D computational grains (CGs) with embedded fibers are proposed for the first time, for the direct micromechanical modeling of fiber composites. The microstructure of a unidirectional lamina with random fibers can be assembled by many CGs, and the stiffness matrix of each CG with an embedded fiber can be directly computed by combining two new algorithms. On one hand, a new kind of Trefftz trial displacement field based on scaled cylindrical harmonics is independently assumed, in addition to inter-elemental displacement interpolations with surface nodal degrees of freedom (DoFs). On the other hand, a new kind of multi-field boundary variational principle is proposed to relate independently assumed Trefftz fields to nodal DoFs and to derive the stiffness matrix. Numerical examples demonstrate that without the traditional fine meshing, accurate distribution of micro-stresses in a representative volume element (RVE) with thousands of fibers can be directly computed, and the equivalent orthotropic properties of fiber composites can be predicted. This is also the first time that a three-dimensional finite element with an embedded fiber is developed.</abstract><cop>Beijing</cop><pub>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</pub><doi>10.1007/s10409-023-23179-x</doi><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0567-7718 |
ispartof | Acta mechanica Sinica, 2023-11, Vol.39 (11), Article 423179 |
issn | 0567-7718 1614-3116 |
language | eng |
recordid | cdi_proquest_journals_2856980454 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Classical and Continuum Physics Composite materials Computation Computational Intelligence Engineering Engineering Fluid Dynamics Fiber composites Fibers Grains Material properties Mathematical analysis Mathematical models Microstructure Research Paper Stiffness matrix Theoretical and Applied Mechanics |
title | 3D computational grains with embedded fibers for the direct micromechanical modeling of fiber composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20computational%20grains%20with%20embedded%20fibers%20for%20the%20direct%20micromechanical%20modeling%20of%20fiber%20composites&rft.jtitle=Acta%20mechanica%20Sinica&rft.au=Huang,%20Yezeng&rft.date=2023-11-01&rft.volume=39&rft.issue=11&rft.artnum=423179&rft.issn=0567-7718&rft.eissn=1614-3116&rft_id=info:doi/10.1007/s10409-023-23179-x&rft_dat=%3Cproquest_cross%3E2856980454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856980454&rft_id=info:pmid/&rfr_iscdi=true |