A Cost-Effective, Nanoporous, High-Entropy Oxide Electrode for Electrocatalytic Water Splitting

High-entropy materials have attracted extensive attention as emerging electrode materials in various energy applications due to their flexible tunability, unusual outstanding activities, and cost-effectiveness using multiple earth-abundant elements. We introduce a novel high-entropy composite oxide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2023-08, Vol.13 (8), p.1461
Hauptverfasser: Liu, Bu-Jine, Yin, Tai-Hsin, Lin, Yu-Wei, Chang, Chun-Wei, Yu, Hsin-Chieh, Lim, Yongtaek, Lee, Hyesung, Choi, Changsik, Tsai, Ming-Kang, Choi, YongMan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1461
container_title Coatings (Basel)
container_volume 13
creator Liu, Bu-Jine
Yin, Tai-Hsin
Lin, Yu-Wei
Chang, Chun-Wei
Yu, Hsin-Chieh
Lim, Yongtaek
Lee, Hyesung
Choi, Changsik
Tsai, Ming-Kang
Choi, YongMan
description High-entropy materials have attracted extensive attention as emerging electrode materials in various energy applications due to their flexible tunability, unusual outstanding activities, and cost-effectiveness using multiple earth-abundant elements. We introduce a novel high-entropy composite oxide with the five elements of Cu, Ni, Co, Fe, and Cr (HEO-3CNF) for use in the oxygen evolution reaction (OER) in electrocatalytic water splitting. HEO-3CNF is composed of two phases with a non-equimolar, deficient high-entropy spinel oxide of (Cu0.2−xNi0.2Co0.2Fe0.2Cr0.2)3O4 and monoclinic copper oxide (CuO). Electrochemical impedance spectroscopy (EIS) with distribution of relaxation times (DRT) analysis validates that the HEO-3CNF-based electrode exhibits faster charge transfer than benchmark CuO. It results in improved OER performance with a lower overpotential at 10 mA/cm2 and a Tafel slope than CuO (518.1 mV and 119.7 mV/dec versus 615.9 mV and 131.7 mV/dec, respectively) in alkaline conditions. This work may provide a general strategy for preparing novel, cost-effective, high-entropy electrodes for water splitting.
doi_str_mv 10.3390/coatings13081461
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2856977666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762482117</galeid><sourcerecordid>A762482117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-85834942c137b059f3ba3c31661dd5b8c9300154978d9d2a7f42e664cb651693</originalsourceid><addsrcrecordid>eNpdUE1LAzEQDaJgqb17XPDarfnabHIspVpB7MGCx5DNJjVlu1mTVOy_N6UK4sxh3gzvzQwPgFsEZ4QIeK-9Sq7fRkQgR5ShCzDCsBYlowhf_sHXYBLjDuYQiHAkRkDOi4WPqVxaa3Ryn2ZavKjeDz74Q5wWK7d9L5d9Cn44Fusv15pi2WVi8BlZH347rZLqjsnp4k0lE4rXoXPp9NINuLKqi2byU8dg87DcLFbl8_rxaTF_LjWpcCp5xQkVFGtE6gZWwpJGEU0QY6htq4ZrQSBEFRU1b0WLVW0pNoxR3bAKMUHG4O68dgj-42Bikjt_CH2-KDGvmKhrxlhmzc6sreqMdL31KSidszV7p31vrMvzec0w5RihOgvgWaCDjzEYK4fg9iocJYLy5Lz87zz5BiT_dvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856977666</pqid></control><display><type>article</type><title>A Cost-Effective, Nanoporous, High-Entropy Oxide Electrode for Electrocatalytic Water Splitting</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><creator>Liu, Bu-Jine ; Yin, Tai-Hsin ; Lin, Yu-Wei ; Chang, Chun-Wei ; Yu, Hsin-Chieh ; Lim, Yongtaek ; Lee, Hyesung ; Choi, Changsik ; Tsai, Ming-Kang ; Choi, YongMan</creator><creatorcontrib>Liu, Bu-Jine ; Yin, Tai-Hsin ; Lin, Yu-Wei ; Chang, Chun-Wei ; Yu, Hsin-Chieh ; Lim, Yongtaek ; Lee, Hyesung ; Choi, Changsik ; Tsai, Ming-Kang ; Choi, YongMan</creatorcontrib><description>High-entropy materials have attracted extensive attention as emerging electrode materials in various energy applications due to their flexible tunability, unusual outstanding activities, and cost-effectiveness using multiple earth-abundant elements. We introduce a novel high-entropy composite oxide with the five elements of Cu, Ni, Co, Fe, and Cr (HEO-3CNF) for use in the oxygen evolution reaction (OER) in electrocatalytic water splitting. HEO-3CNF is composed of two phases with a non-equimolar, deficient high-entropy spinel oxide of (Cu0.2−xNi0.2Co0.2Fe0.2Cr0.2)3O4 and monoclinic copper oxide (CuO). Electrochemical impedance spectroscopy (EIS) with distribution of relaxation times (DRT) analysis validates that the HEO-3CNF-based electrode exhibits faster charge transfer than benchmark CuO. It results in improved OER performance with a lower overpotential at 10 mA/cm2 and a Tafel slope than CuO (518.1 mV and 119.7 mV/dec versus 615.9 mV and 131.7 mV/dec, respectively) in alkaline conditions. This work may provide a general strategy for preparing novel, cost-effective, high-entropy electrodes for water splitting.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings13081461</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Carbon ; Charge transfer ; Chromium ; Copper ; Copper oxide ; Copper oxides ; Cuprite ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrodes ; Energy resources ; Entropy ; Fossil fuels ; Green hydrogen ; Hydrogen ; Oxygen evolution reactions ; Radiation ; Renewable resources ; Scanning electron microscopy ; Voltammetry ; Water splitting</subject><ispartof>Coatings (Basel), 2023-08, Vol.13 (8), p.1461</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-85834942c137b059f3ba3c31661dd5b8c9300154978d9d2a7f42e664cb651693</citedby><cites>FETCH-LOGICAL-c352t-85834942c137b059f3ba3c31661dd5b8c9300154978d9d2a7f42e664cb651693</cites><orcidid>0000-0003-4276-1599 ; 0000-0001-9189-5572 ; 0000-0001-9166-2082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Bu-Jine</creatorcontrib><creatorcontrib>Yin, Tai-Hsin</creatorcontrib><creatorcontrib>Lin, Yu-Wei</creatorcontrib><creatorcontrib>Chang, Chun-Wei</creatorcontrib><creatorcontrib>Yu, Hsin-Chieh</creatorcontrib><creatorcontrib>Lim, Yongtaek</creatorcontrib><creatorcontrib>Lee, Hyesung</creatorcontrib><creatorcontrib>Choi, Changsik</creatorcontrib><creatorcontrib>Tsai, Ming-Kang</creatorcontrib><creatorcontrib>Choi, YongMan</creatorcontrib><title>A Cost-Effective, Nanoporous, High-Entropy Oxide Electrode for Electrocatalytic Water Splitting</title><title>Coatings (Basel)</title><description>High-entropy materials have attracted extensive attention as emerging electrode materials in various energy applications due to their flexible tunability, unusual outstanding activities, and cost-effectiveness using multiple earth-abundant elements. We introduce a novel high-entropy composite oxide with the five elements of Cu, Ni, Co, Fe, and Cr (HEO-3CNF) for use in the oxygen evolution reaction (OER) in electrocatalytic water splitting. HEO-3CNF is composed of two phases with a non-equimolar, deficient high-entropy spinel oxide of (Cu0.2−xNi0.2Co0.2Fe0.2Cr0.2)3O4 and monoclinic copper oxide (CuO). Electrochemical impedance spectroscopy (EIS) with distribution of relaxation times (DRT) analysis validates that the HEO-3CNF-based electrode exhibits faster charge transfer than benchmark CuO. It results in improved OER performance with a lower overpotential at 10 mA/cm2 and a Tafel slope than CuO (518.1 mV and 119.7 mV/dec versus 615.9 mV and 131.7 mV/dec, respectively) in alkaline conditions. This work may provide a general strategy for preparing novel, cost-effective, high-entropy electrodes for water splitting.</description><subject>Alternative energy sources</subject><subject>Carbon</subject><subject>Charge transfer</subject><subject>Chromium</subject><subject>Copper</subject><subject>Copper oxide</subject><subject>Copper oxides</subject><subject>Cuprite</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy resources</subject><subject>Entropy</subject><subject>Fossil fuels</subject><subject>Green hydrogen</subject><subject>Hydrogen</subject><subject>Oxygen evolution reactions</subject><subject>Radiation</subject><subject>Renewable resources</subject><subject>Scanning electron microscopy</subject><subject>Voltammetry</subject><subject>Water splitting</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUE1LAzEQDaJgqb17XPDarfnabHIspVpB7MGCx5DNJjVlu1mTVOy_N6UK4sxh3gzvzQwPgFsEZ4QIeK-9Sq7fRkQgR5ShCzDCsBYlowhf_sHXYBLjDuYQiHAkRkDOi4WPqVxaa3Ryn2ZavKjeDz74Q5wWK7d9L5d9Cn44Fusv15pi2WVi8BlZH347rZLqjsnp4k0lE4rXoXPp9NINuLKqi2byU8dg87DcLFbl8_rxaTF_LjWpcCp5xQkVFGtE6gZWwpJGEU0QY6htq4ZrQSBEFRU1b0WLVW0pNoxR3bAKMUHG4O68dgj-42Bikjt_CH2-KDGvmKhrxlhmzc6sreqMdL31KSidszV7p31vrMvzec0w5RihOgvgWaCDjzEYK4fg9iocJYLy5Lz87zz5BiT_dvE</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Liu, Bu-Jine</creator><creator>Yin, Tai-Hsin</creator><creator>Lin, Yu-Wei</creator><creator>Chang, Chun-Wei</creator><creator>Yu, Hsin-Chieh</creator><creator>Lim, Yongtaek</creator><creator>Lee, Hyesung</creator><creator>Choi, Changsik</creator><creator>Tsai, Ming-Kang</creator><creator>Choi, YongMan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4276-1599</orcidid><orcidid>https://orcid.org/0000-0001-9189-5572</orcidid><orcidid>https://orcid.org/0000-0001-9166-2082</orcidid></search><sort><creationdate>20230801</creationdate><title>A Cost-Effective, Nanoporous, High-Entropy Oxide Electrode for Electrocatalytic Water Splitting</title><author>Liu, Bu-Jine ; Yin, Tai-Hsin ; Lin, Yu-Wei ; Chang, Chun-Wei ; Yu, Hsin-Chieh ; Lim, Yongtaek ; Lee, Hyesung ; Choi, Changsik ; Tsai, Ming-Kang ; Choi, YongMan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-85834942c137b059f3ba3c31661dd5b8c9300154978d9d2a7f42e664cb651693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Carbon</topic><topic>Charge transfer</topic><topic>Chromium</topic><topic>Copper</topic><topic>Copper oxide</topic><topic>Copper oxides</topic><topic>Cuprite</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy resources</topic><topic>Entropy</topic><topic>Fossil fuels</topic><topic>Green hydrogen</topic><topic>Hydrogen</topic><topic>Oxygen evolution reactions</topic><topic>Radiation</topic><topic>Renewable resources</topic><topic>Scanning electron microscopy</topic><topic>Voltammetry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bu-Jine</creatorcontrib><creatorcontrib>Yin, Tai-Hsin</creatorcontrib><creatorcontrib>Lin, Yu-Wei</creatorcontrib><creatorcontrib>Chang, Chun-Wei</creatorcontrib><creatorcontrib>Yu, Hsin-Chieh</creatorcontrib><creatorcontrib>Lim, Yongtaek</creatorcontrib><creatorcontrib>Lee, Hyesung</creatorcontrib><creatorcontrib>Choi, Changsik</creatorcontrib><creatorcontrib>Tsai, Ming-Kang</creatorcontrib><creatorcontrib>Choi, YongMan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bu-Jine</au><au>Yin, Tai-Hsin</au><au>Lin, Yu-Wei</au><au>Chang, Chun-Wei</au><au>Yu, Hsin-Chieh</au><au>Lim, Yongtaek</au><au>Lee, Hyesung</au><au>Choi, Changsik</au><au>Tsai, Ming-Kang</au><au>Choi, YongMan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cost-Effective, Nanoporous, High-Entropy Oxide Electrode for Electrocatalytic Water Splitting</atitle><jtitle>Coatings (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>8</issue><spage>1461</spage><pages>1461-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>High-entropy materials have attracted extensive attention as emerging electrode materials in various energy applications due to their flexible tunability, unusual outstanding activities, and cost-effectiveness using multiple earth-abundant elements. We introduce a novel high-entropy composite oxide with the five elements of Cu, Ni, Co, Fe, and Cr (HEO-3CNF) for use in the oxygen evolution reaction (OER) in electrocatalytic water splitting. HEO-3CNF is composed of two phases with a non-equimolar, deficient high-entropy spinel oxide of (Cu0.2−xNi0.2Co0.2Fe0.2Cr0.2)3O4 and monoclinic copper oxide (CuO). Electrochemical impedance spectroscopy (EIS) with distribution of relaxation times (DRT) analysis validates that the HEO-3CNF-based electrode exhibits faster charge transfer than benchmark CuO. It results in improved OER performance with a lower overpotential at 10 mA/cm2 and a Tafel slope than CuO (518.1 mV and 119.7 mV/dec versus 615.9 mV and 131.7 mV/dec, respectively) in alkaline conditions. This work may provide a general strategy for preparing novel, cost-effective, high-entropy electrodes for water splitting.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings13081461</doi><orcidid>https://orcid.org/0000-0003-4276-1599</orcidid><orcidid>https://orcid.org/0000-0001-9189-5572</orcidid><orcidid>https://orcid.org/0000-0001-9166-2082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2023-08, Vol.13 (8), p.1461
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2856977666
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection
subjects Alternative energy sources
Carbon
Charge transfer
Chromium
Copper
Copper oxide
Copper oxides
Cuprite
Electrochemical impedance spectroscopy
Electrode materials
Electrodes
Energy resources
Entropy
Fossil fuels
Green hydrogen
Hydrogen
Oxygen evolution reactions
Radiation
Renewable resources
Scanning electron microscopy
Voltammetry
Water splitting
title A Cost-Effective, Nanoporous, High-Entropy Oxide Electrode for Electrocatalytic Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cost-Effective,%20Nanoporous,%20High-Entropy%20Oxide%20Electrode%20for%20Electrocatalytic%20Water%20Splitting&rft.jtitle=Coatings%20(Basel)&rft.au=Liu,%20Bu-Jine&rft.date=2023-08-01&rft.volume=13&rft.issue=8&rft.spage=1461&rft.pages=1461-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings13081461&rft_dat=%3Cgale_proqu%3EA762482117%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856977666&rft_id=info:pmid/&rft_galeid=A762482117&rfr_iscdi=true