Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements
In this study, the fabricated Al/ p -Si Schottky diode is characterised at room temperature using current–voltage ( I–V ) and capacitance–voltage–frequency ( C–V–f ) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In t...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023-08, Vol.34 (24), p.1712, Article 1712 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 1712 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Moloi, S. J. Bodunrin, J. O. |
description | In this study, the fabricated Al/
p
-Si Schottky diode is characterised at room temperature using current–voltage (
I–V
) and capacitance–voltage–frequency (
C–V–f
) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In the
I–V
measurements, the variation in energy, charge, and density of the interface states is described in terms of the applied forward bias with respect to the zero Schottky barrier height. The capacitance measurements, on the other hand, are used to address a long-standing low-voltage capacitance peak in terms of the distribution of interface state charge. In general, both techniques complement each other, indicating that the space charge region (SCR) starts to be varied at a voltage of − 0.66 V, after the compensation of interface states by majority carriers. The findings presented here are critical for current and future research on junction-based devices for a variety of applications in which the SCR and bulk material properties are examined solely from metal-semiconductor (m–s) interface states. |
doi_str_mv | 10.1007/s10854-023-11090-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2856655730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856655730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7c66d5bdcc51463901269beec1dca47e0871d1ecacb7a2286be88a718e66a67c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWD9ewFPAc2yS3U3SoxS_QPCggrcwOzurq-1uTVKhN0--gG_ok5hawZun-fr_Z4YfY0dKnigp7Tgq6apSSF0IpeRECrPFRqqyhSidfthmIzmprCgrrXfZXozPUkpTFm7EPqZPEAAThS5C6oaeDy3v-ly3gMRjgkRx3TudjRfituO3-DSk9LLiTTc0xOsVx2UI1Kev98-3YZbgkTj0DUdYAHYJeqS_Sc7aQK9L6nHF5wRxGWievfGA7bQwi3T4G_fZ_fnZ3fRSXN9cXE1PrwUWpkjCojFNVTeIlSpNMZFKm0lNhKpBKC1JZ1WjCAFrC1o7U5NzYJUjY8BYLPbZ8WbvIgz5jZj887AMfT7ptauMqTIymVV6o8IwxBio9YvQzSGsvJJ-zdtvePvM2__w9iabio0pZnH_SOFv9T-ub44OiYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856655730</pqid></control><display><type>article</type><title>Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements</title><source>SpringerLink Journals</source><creator>Moloi, S. J. ; Bodunrin, J. O.</creator><creatorcontrib>Moloi, S. J. ; Bodunrin, J. O.</creatorcontrib><description>In this study, the fabricated Al/
p
-Si Schottky diode is characterised at room temperature using current–voltage (
I–V
) and capacitance–voltage–frequency (
C–V–f
) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In the
I–V
measurements, the variation in energy, charge, and density of the interface states is described in terms of the applied forward bias with respect to the zero Schottky barrier height. The capacitance measurements, on the other hand, are used to address a long-standing low-voltage capacitance peak in terms of the distribution of interface state charge. In general, both techniques complement each other, indicating that the space charge region (SCR) starts to be varied at a voltage of − 0.66 V, after the compensation of interface states by majority carriers. The findings presented here are critical for current and future research on junction-based devices for a variety of applications in which the SCR and bulk material properties are examined solely from metal-semiconductor (m–s) interface states.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11090-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Density ; Diodes ; Electric potential ; Energy distribution ; Frequency measurement ; Majority carriers ; Material properties ; Materials Science ; Optical and Electronic Materials ; Room temperature ; Schottky diodes ; Silicon ; Space charge ; Voltage</subject><ispartof>Journal of materials science. Materials in electronics, 2023-08, Vol.34 (24), p.1712, Article 1712</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7c66d5bdcc51463901269beec1dca47e0871d1ecacb7a2286be88a718e66a67c3</citedby><cites>FETCH-LOGICAL-c363t-7c66d5bdcc51463901269beec1dca47e0871d1ecacb7a2286be88a718e66a67c3</cites><orcidid>0000-0003-4666-9781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11090-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11090-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Moloi, S. J.</creatorcontrib><creatorcontrib>Bodunrin, J. O.</creatorcontrib><title>Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this study, the fabricated Al/
p
-Si Schottky diode is characterised at room temperature using current–voltage (
I–V
) and capacitance–voltage–frequency (
C–V–f
) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In the
I–V
measurements, the variation in energy, charge, and density of the interface states is described in terms of the applied forward bias with respect to the zero Schottky barrier height. The capacitance measurements, on the other hand, are used to address a long-standing low-voltage capacitance peak in terms of the distribution of interface state charge. In general, both techniques complement each other, indicating that the space charge region (SCR) starts to be varied at a voltage of − 0.66 V, after the compensation of interface states by majority carriers. The findings presented here are critical for current and future research on junction-based devices for a variety of applications in which the SCR and bulk material properties are examined solely from metal-semiconductor (m–s) interface states.</description><subject>Aluminum</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Density</subject><subject>Diodes</subject><subject>Electric potential</subject><subject>Energy distribution</subject><subject>Frequency measurement</subject><subject>Majority carriers</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Room temperature</subject><subject>Schottky diodes</subject><subject>Silicon</subject><subject>Space charge</subject><subject>Voltage</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEQx4MoWD9ewFPAc2yS3U3SoxS_QPCggrcwOzurq-1uTVKhN0--gG_ok5hawZun-fr_Z4YfY0dKnigp7Tgq6apSSF0IpeRECrPFRqqyhSidfthmIzmprCgrrXfZXozPUkpTFm7EPqZPEAAThS5C6oaeDy3v-ly3gMRjgkRx3TudjRfituO3-DSk9LLiTTc0xOsVx2UI1Kev98-3YZbgkTj0DUdYAHYJeqS_Sc7aQK9L6nHF5wRxGWievfGA7bQwi3T4G_fZ_fnZ3fRSXN9cXE1PrwUWpkjCojFNVTeIlSpNMZFKm0lNhKpBKC1JZ1WjCAFrC1o7U5NzYJUjY8BYLPbZ8WbvIgz5jZj887AMfT7ptauMqTIymVV6o8IwxBio9YvQzSGsvJJ-zdtvePvM2__w9iabio0pZnH_SOFv9T-ub44OiYk</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Moloi, S. J.</creator><creator>Bodunrin, J. O.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4666-9781</orcidid></search><sort><creationdate>20230801</creationdate><title>Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements</title><author>Moloi, S. J. ; Bodunrin, J. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7c66d5bdcc51463901269beec1dca47e0871d1ecacb7a2286be88a718e66a67c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Density</topic><topic>Diodes</topic><topic>Electric potential</topic><topic>Energy distribution</topic><topic>Frequency measurement</topic><topic>Majority carriers</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Room temperature</topic><topic>Schottky diodes</topic><topic>Silicon</topic><topic>Space charge</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moloi, S. J.</creatorcontrib><creatorcontrib>Bodunrin, J. O.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moloi, S. J.</au><au>Bodunrin, J. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>24</issue><spage>1712</spage><pages>1712-</pages><artnum>1712</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this study, the fabricated Al/
p
-Si Schottky diode is characterised at room temperature using current–voltage (
I–V
) and capacitance–voltage–frequency (
C–V–f
) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In the
I–V
measurements, the variation in energy, charge, and density of the interface states is described in terms of the applied forward bias with respect to the zero Schottky barrier height. The capacitance measurements, on the other hand, are used to address a long-standing low-voltage capacitance peak in terms of the distribution of interface state charge. In general, both techniques complement each other, indicating that the space charge region (SCR) starts to be varied at a voltage of − 0.66 V, after the compensation of interface states by majority carriers. The findings presented here are critical for current and future research on junction-based devices for a variety of applications in which the SCR and bulk material properties are examined solely from metal-semiconductor (m–s) interface states.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11090-6</doi><orcidid>https://orcid.org/0000-0003-4666-9781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-08, Vol.34 (24), p.1712, Article 1712 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2856655730 |
source | SpringerLink Journals |
subjects | Aluminum Capacitance Characterization and Evaluation of Materials Chemistry and Materials Science Density Diodes Electric potential Energy distribution Frequency measurement Majority carriers Material properties Materials Science Optical and Electronic Materials Room temperature Schottky diodes Silicon Space charge Voltage |
title | Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20interface%20states%20of%20Al/p-Si%20Schottky%20diode%20by%20current%E2%80%93voltage%20and%20capacitance%E2%80%93voltage%E2%80%93frequency%20measurements&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Moloi,%20S.%20J.&rft.date=2023-08-01&rft.volume=34&rft.issue=24&rft.spage=1712&rft.pages=1712-&rft.artnum=1712&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11090-6&rft_dat=%3Cproquest_cross%3E2856655730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856655730&rft_id=info:pmid/&rfr_iscdi=true |