Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements

In this study, the fabricated Al/ p -Si Schottky diode is characterised at room temperature using current–voltage ( I–V ) and capacitance–voltage–frequency ( C–V–f ) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-08, Vol.34 (24), p.1712, Article 1712
Hauptverfasser: Moloi, S. J., Bodunrin, J. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 1712
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Moloi, S. J.
Bodunrin, J. O.
description In this study, the fabricated Al/ p -Si Schottky diode is characterised at room temperature using current–voltage ( I–V ) and capacitance–voltage–frequency ( C–V–f ) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In the I–V measurements, the variation in energy, charge, and density of the interface states is described in terms of the applied forward bias with respect to the zero Schottky barrier height. The capacitance measurements, on the other hand, are used to address a long-standing low-voltage capacitance peak in terms of the distribution of interface state charge. In general, both techniques complement each other, indicating that the space charge region (SCR) starts to be varied at a voltage of − 0.66 V, after the compensation of interface states by majority carriers. The findings presented here are critical for current and future research on junction-based devices for a variety of applications in which the SCR and bulk material properties are examined solely from metal-semiconductor (m–s) interface states.
doi_str_mv 10.1007/s10854-023-11090-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2856655730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856655730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7c66d5bdcc51463901269beec1dca47e0871d1ecacb7a2286be88a718e66a67c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWD9ewFPAc2yS3U3SoxS_QPCggrcwOzurq-1uTVKhN0--gG_ok5hawZun-fr_Z4YfY0dKnigp7Tgq6apSSF0IpeRECrPFRqqyhSidfthmIzmprCgrrXfZXozPUkpTFm7EPqZPEAAThS5C6oaeDy3v-ly3gMRjgkRx3TudjRfituO3-DSk9LLiTTc0xOsVx2UI1Kev98-3YZbgkTj0DUdYAHYJeqS_Sc7aQK9L6nHF5wRxGWievfGA7bQwi3T4G_fZ_fnZ3fRSXN9cXE1PrwUWpkjCojFNVTeIlSpNMZFKm0lNhKpBKC1JZ1WjCAFrC1o7U5NzYJUjY8BYLPbZ8WbvIgz5jZj887AMfT7ptauMqTIymVV6o8IwxBio9YvQzSGsvJJ-zdtvePvM2__w9iabio0pZnH_SOFv9T-ub44OiYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856655730</pqid></control><display><type>article</type><title>Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements</title><source>SpringerLink Journals</source><creator>Moloi, S. J. ; Bodunrin, J. O.</creator><creatorcontrib>Moloi, S. J. ; Bodunrin, J. O.</creatorcontrib><description>In this study, the fabricated Al/ p -Si Schottky diode is characterised at room temperature using current–voltage ( I–V ) and capacitance–voltage–frequency ( C–V–f ) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In the I–V measurements, the variation in energy, charge, and density of the interface states is described in terms of the applied forward bias with respect to the zero Schottky barrier height. The capacitance measurements, on the other hand, are used to address a long-standing low-voltage capacitance peak in terms of the distribution of interface state charge. In general, both techniques complement each other, indicating that the space charge region (SCR) starts to be varied at a voltage of − 0.66 V, after the compensation of interface states by majority carriers. The findings presented here are critical for current and future research on junction-based devices for a variety of applications in which the SCR and bulk material properties are examined solely from metal-semiconductor (m–s) interface states.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11090-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Density ; Diodes ; Electric potential ; Energy distribution ; Frequency measurement ; Majority carriers ; Material properties ; Materials Science ; Optical and Electronic Materials ; Room temperature ; Schottky diodes ; Silicon ; Space charge ; Voltage</subject><ispartof>Journal of materials science. Materials in electronics, 2023-08, Vol.34 (24), p.1712, Article 1712</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7c66d5bdcc51463901269beec1dca47e0871d1ecacb7a2286be88a718e66a67c3</citedby><cites>FETCH-LOGICAL-c363t-7c66d5bdcc51463901269beec1dca47e0871d1ecacb7a2286be88a718e66a67c3</cites><orcidid>0000-0003-4666-9781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11090-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11090-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Moloi, S. J.</creatorcontrib><creatorcontrib>Bodunrin, J. O.</creatorcontrib><title>Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this study, the fabricated Al/ p -Si Schottky diode is characterised at room temperature using current–voltage ( I–V ) and capacitance–voltage–frequency ( C–V–f ) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In the I–V measurements, the variation in energy, charge, and density of the interface states is described in terms of the applied forward bias with respect to the zero Schottky barrier height. The capacitance measurements, on the other hand, are used to address a long-standing low-voltage capacitance peak in terms of the distribution of interface state charge. In general, both techniques complement each other, indicating that the space charge region (SCR) starts to be varied at a voltage of − 0.66 V, after the compensation of interface states by majority carriers. The findings presented here are critical for current and future research on junction-based devices for a variety of applications in which the SCR and bulk material properties are examined solely from metal-semiconductor (m–s) interface states.</description><subject>Aluminum</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Density</subject><subject>Diodes</subject><subject>Electric potential</subject><subject>Energy distribution</subject><subject>Frequency measurement</subject><subject>Majority carriers</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Room temperature</subject><subject>Schottky diodes</subject><subject>Silicon</subject><subject>Space charge</subject><subject>Voltage</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEQx4MoWD9ewFPAc2yS3U3SoxS_QPCggrcwOzurq-1uTVKhN0--gG_ok5hawZun-fr_Z4YfY0dKnigp7Tgq6apSSF0IpeRECrPFRqqyhSidfthmIzmprCgrrXfZXozPUkpTFm7EPqZPEAAThS5C6oaeDy3v-ly3gMRjgkRx3TudjRfituO3-DSk9LLiTTc0xOsVx2UI1Kev98-3YZbgkTj0DUdYAHYJeqS_Sc7aQK9L6nHF5wRxGWievfGA7bQwi3T4G_fZ_fnZ3fRSXN9cXE1PrwUWpkjCojFNVTeIlSpNMZFKm0lNhKpBKC1JZ1WjCAFrC1o7U5NzYJUjY8BYLPbZ8WbvIgz5jZj887AMfT7ptauMqTIymVV6o8IwxBio9YvQzSGsvJJ-zdtvePvM2__w9iabio0pZnH_SOFv9T-ub44OiYk</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Moloi, S. J.</creator><creator>Bodunrin, J. O.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4666-9781</orcidid></search><sort><creationdate>20230801</creationdate><title>Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements</title><author>Moloi, S. J. ; Bodunrin, J. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7c66d5bdcc51463901269beec1dca47e0871d1ecacb7a2286be88a718e66a67c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Density</topic><topic>Diodes</topic><topic>Electric potential</topic><topic>Energy distribution</topic><topic>Frequency measurement</topic><topic>Majority carriers</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Room temperature</topic><topic>Schottky diodes</topic><topic>Silicon</topic><topic>Space charge</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moloi, S. J.</creatorcontrib><creatorcontrib>Bodunrin, J. O.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moloi, S. J.</au><au>Bodunrin, J. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>24</issue><spage>1712</spage><pages>1712-</pages><artnum>1712</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this study, the fabricated Al/ p -Si Schottky diode is characterised at room temperature using current–voltage ( I–V ) and capacitance–voltage–frequency ( C–V–f ) techniques. The energy distribution profile of the diode’s interface state density is generated using different diode parameters. In the I–V measurements, the variation in energy, charge, and density of the interface states is described in terms of the applied forward bias with respect to the zero Schottky barrier height. The capacitance measurements, on the other hand, are used to address a long-standing low-voltage capacitance peak in terms of the distribution of interface state charge. In general, both techniques complement each other, indicating that the space charge region (SCR) starts to be varied at a voltage of − 0.66 V, after the compensation of interface states by majority carriers. The findings presented here are critical for current and future research on junction-based devices for a variety of applications in which the SCR and bulk material properties are examined solely from metal-semiconductor (m–s) interface states.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11090-6</doi><orcidid>https://orcid.org/0000-0003-4666-9781</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-08, Vol.34 (24), p.1712, Article 1712
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2856655730
source SpringerLink Journals
subjects Aluminum
Capacitance
Characterization and Evaluation of Materials
Chemistry and Materials Science
Density
Diodes
Electric potential
Energy distribution
Frequency measurement
Majority carriers
Material properties
Materials Science
Optical and Electronic Materials
Room temperature
Schottky diodes
Silicon
Space charge
Voltage
title Characterisation of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20interface%20states%20of%20Al/p-Si%20Schottky%20diode%20by%20current%E2%80%93voltage%20and%20capacitance%E2%80%93voltage%E2%80%93frequency%20measurements&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Moloi,%20S.%20J.&rft.date=2023-08-01&rft.volume=34&rft.issue=24&rft.spage=1712&rft.pages=1712-&rft.artnum=1712&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11090-6&rft_dat=%3Cproquest_cross%3E2856655730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856655730&rft_id=info:pmid/&rfr_iscdi=true