Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch

Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, traditional SSL suffers severe performance damage due to the harmful invasion of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Du, Pan, Zhao, Suyun, Sheng, Zisen, Li, Cuiping, Chen, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Du, Pan
Zhao, Suyun
Sheng, Zisen
Li, Cuiping
Chen, Hong
description Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, traditional SSL suffers severe performance damage due to the harmful invasion of the instances with unknown categories into the target classifier. In this study, by strict mathematical reasoning, we reveal that the SSL error under class distribution mismatch is composed of pseudo-labeling error and invasion error, both of which jointly bound the SSL population risk. To alleviate the SSL error, we propose a robust SSL framework called Weight-Aware Distillation (WAD) that, by weights, selectively transfers knowledge beneficial to the target task from unsupervised contrastive representation to the target classifier. Specifically, WAD captures adaptive weights and high-quality pseudo labels to target instances by exploring point mutual information (PMI) in representation space to maximize the role of unlabeled data and filter unknown categories. Theoretically, we prove that WAD has a tight upper bound of population risk under class distribution mismatch. Experimentally, extensive results demonstrate that WAD outperforms five state-of-the-art SSL approaches and one standard baseline on two benchmark datasets, CIFAR10 and CIFAR100, and an artificial cross-dataset. The code is available at https://github.com/RUC-DWBI-ML/research/tree/main/WAD-master.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2856632107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856632107</sourcerecordid><originalsourceid>FETCH-proquest_journals_28566321073</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHQZaCzqTP3srWtTKoHYy5U2v6GhzZ-z1i-gBWp3Fd2bME1JGQbYRYsF8ojYMQ5GkIo6lx64F9BgUbgQzIUHFj6CMRl3zCRW_ANaNDdRLGeBbJItdpywOmjtdgeF5p4i-YPDmvnBC6pW9Nys2f6iOwP91ydb73Tk_BKMZng7Ilu3gjP5QKbI4SaSIwlT-d70B0WRCYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856632107</pqid></control><display><type>article</type><title>Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch</title><source>Free E- Journals</source><creator>Du, Pan ; Zhao, Suyun ; Sheng, Zisen ; Li, Cuiping ; Chen, Hong</creator><creatorcontrib>Du, Pan ; Zhao, Suyun ; Sheng, Zisen ; Li, Cuiping ; Chen, Hong</creatorcontrib><description>Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, traditional SSL suffers severe performance damage due to the harmful invasion of the instances with unknown categories into the target classifier. In this study, by strict mathematical reasoning, we reveal that the SSL error under class distribution mismatch is composed of pseudo-labeling error and invasion error, both of which jointly bound the SSL population risk. To alleviate the SSL error, we propose a robust SSL framework called Weight-Aware Distillation (WAD) that, by weights, selectively transfers knowledge beneficial to the target task from unsupervised contrastive representation to the target classifier. Specifically, WAD captures adaptive weights and high-quality pseudo labels to target instances by exploring point mutual information (PMI) in representation space to maximize the role of unlabeled data and filter unknown categories. Theoretically, we prove that WAD has a tight upper bound of population risk under class distribution mismatch. Experimentally, extensive results demonstrate that WAD outperforms five state-of-the-art SSL approaches and one standard baseline on two benchmark datasets, CIFAR10 and CIFAR100, and an artificial cross-dataset. The code is available at https://github.com/RUC-DWBI-ML/research/tree/main/WAD-master.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Classifiers ; Datasets ; Distillation ; Knowledge management ; Labels ; Representations ; Robustness (mathematics) ; Semi-supervised learning ; Upper bounds</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Du, Pan</creatorcontrib><creatorcontrib>Zhao, Suyun</creatorcontrib><creatorcontrib>Sheng, Zisen</creatorcontrib><creatorcontrib>Li, Cuiping</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><title>Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch</title><title>arXiv.org</title><description>Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, traditional SSL suffers severe performance damage due to the harmful invasion of the instances with unknown categories into the target classifier. In this study, by strict mathematical reasoning, we reveal that the SSL error under class distribution mismatch is composed of pseudo-labeling error and invasion error, both of which jointly bound the SSL population risk. To alleviate the SSL error, we propose a robust SSL framework called Weight-Aware Distillation (WAD) that, by weights, selectively transfers knowledge beneficial to the target task from unsupervised contrastive representation to the target classifier. Specifically, WAD captures adaptive weights and high-quality pseudo labels to target instances by exploring point mutual information (PMI) in representation space to maximize the role of unlabeled data and filter unknown categories. Theoretically, we prove that WAD has a tight upper bound of population risk under class distribution mismatch. Experimentally, extensive results demonstrate that WAD outperforms five state-of-the-art SSL approaches and one standard baseline on two benchmark datasets, CIFAR10 and CIFAR100, and an artificial cross-dataset. The code is available at https://github.com/RUC-DWBI-ML/research/tree/main/WAD-master.</description><subject>Categories</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Distillation</subject><subject>Knowledge management</subject><subject>Labels</subject><subject>Representations</subject><subject>Robustness (mathematics)</subject><subject>Semi-supervised learning</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHQZaCzqTP3srWtTKoHYy5U2v6GhzZ-z1i-gBWp3Fd2bME1JGQbYRYsF8ojYMQ5GkIo6lx64F9BgUbgQzIUHFj6CMRl3zCRW_ANaNDdRLGeBbJItdpywOmjtdgeF5p4i-YPDmvnBC6pW9Nys2f6iOwP91ydb73Tk_BKMZng7Ilu3gjP5QKbI4SaSIwlT-d70B0WRCYQ</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Du, Pan</creator><creator>Zhao, Suyun</creator><creator>Sheng, Zisen</creator><creator>Li, Cuiping</creator><creator>Chen, Hong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230823</creationdate><title>Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch</title><author>Du, Pan ; Zhao, Suyun ; Sheng, Zisen ; Li, Cuiping ; Chen, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28566321073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Categories</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Distillation</topic><topic>Knowledge management</topic><topic>Labels</topic><topic>Representations</topic><topic>Robustness (mathematics)</topic><topic>Semi-supervised learning</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Du, Pan</creatorcontrib><creatorcontrib>Zhao, Suyun</creatorcontrib><creatorcontrib>Sheng, Zisen</creatorcontrib><creatorcontrib>Li, Cuiping</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Pan</au><au>Zhao, Suyun</au><au>Sheng, Zisen</au><au>Li, Cuiping</au><au>Chen, Hong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch</atitle><jtitle>arXiv.org</jtitle><date>2023-08-23</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, traditional SSL suffers severe performance damage due to the harmful invasion of the instances with unknown categories into the target classifier. In this study, by strict mathematical reasoning, we reveal that the SSL error under class distribution mismatch is composed of pseudo-labeling error and invasion error, both of which jointly bound the SSL population risk. To alleviate the SSL error, we propose a robust SSL framework called Weight-Aware Distillation (WAD) that, by weights, selectively transfers knowledge beneficial to the target task from unsupervised contrastive representation to the target classifier. Specifically, WAD captures adaptive weights and high-quality pseudo labels to target instances by exploring point mutual information (PMI) in representation space to maximize the role of unlabeled data and filter unknown categories. Theoretically, we prove that WAD has a tight upper bound of population risk under class distribution mismatch. Experimentally, extensive results demonstrate that WAD outperforms five state-of-the-art SSL approaches and one standard baseline on two benchmark datasets, CIFAR10 and CIFAR100, and an artificial cross-dataset. The code is available at https://github.com/RUC-DWBI-ML/research/tree/main/WAD-master.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2856632107
source Free E- Journals
subjects Categories
Classifiers
Datasets
Distillation
Knowledge management
Labels
Representations
Robustness (mathematics)
Semi-supervised learning
Upper bounds
title Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Semi-Supervised%20Learning%20via%20Weight-aware%20Distillation%20under%20Class%20Distribution%20Mismatch&rft.jtitle=arXiv.org&rft.au=Du,%20Pan&rft.date=2023-08-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2856632107%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856632107&rft_id=info:pmid/&rfr_iscdi=true