Designing an attack-defense game: how to increase robustness of financial transaction models via a competition
Banks routinely use neural networks to make decisions. While these models offer higher accuracy, they are susceptible to adversarial attacks, a risk often overlooked in the context of event sequences, particularly sequences of financial transactions, as most works consider computer vision and NLP mo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Banks routinely use neural networks to make decisions. While these models offer higher accuracy, they are susceptible to adversarial attacks, a risk often overlooked in the context of event sequences, particularly sequences of financial transactions, as most works consider computer vision and NLP modalities. We propose a thorough approach to studying these risks: a novel type of competition that allows a realistic and detailed investigation of problems in financial transaction data. The participants directly oppose each other, proposing attacks and defenses -- so they are examined in close-to-real-life conditions. The paper outlines our unique competition structure with direct opposition of participants, presents results for several different top submissions, and analyzes the competition results. We also introduce a new open dataset featuring financial transactions with credit default labels, enhancing the scope for practical research and development. |
---|---|
ISSN: | 2331-8422 |