Object detection and facial recognition for the blind using deep learning and IoT
As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of considerat...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2790 |
creator | Kuppuswamy, Ashwini Rajan, Preethi Vannia Selvaraj, Sharika Krishnaveni Sankarappan, Subburaj Subramaniam, Murugavalli |
description | As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of consideration on the worldwide phase of examination about PC vision. The Internet of things assigns actual articles that are inserted with sensors, regulation capacity, programming, and different advancements that associate and trade information with different gadgets and frameworks over the Internet or different foundations organizations. Applying profound brain organizations to IOT gadgets could achieve an age of requesting equipped for performing complex detecting and acknowledgment errands to help another domain of collaborations among people and their actual airs. We have involved a high-level processor Raspberry pi for viable speed and remote capacities. This paper includes the plan of elements for depicting the article and facial qualities followed by reconciliation with classifiers. Haar Cascade classifier is a successful for articles and face identification method. It is an item openness calculation used to distinguish faces in a picture or a constant video. |
doi_str_mv | 10.1063/5.0153559 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2856617521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856617521</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-c1871a4f6b17986bf2d63ec9dcb0aefd76930d4bd65a8f6da364220cb45d31593</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv0HAm7A1k2ySzVGK1kKhCBW8hfytKevumt0e_Pbu2p4eM_zeDO8hdA9kAUSwJ74gwBnn6gLNgHMopABxiWaEqLKgJfu8Rjd9fyCEKimrGXrf2kNwA_ZhGCW1DTaNx9G4ZGqcg2v3Tfpfxzbj4StgW6cROPap2Y-m0OE6mNxM02Rct7tbdBVN3Ye7s87Rx-vLbvlWbLar9fJ5U3TA2FA4qCSYMgoLUlXCRuoFC055Z4kJ0UuhGPGl9YKbKgpvmCgpJc6W3DPgis3Rw-lul9ufY-gHfWiPuRlfalpxIUByCiP1eKJ6lwYzJdFdTt8m_2ogeqpMc32ujP0BiERdWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2856617521</pqid></control><display><type>conference_proceeding</type><title>Object detection and facial recognition for the blind using deep learning and IoT</title><source>AIP Journals Complete</source><creator>Kuppuswamy, Ashwini ; Rajan, Preethi Vannia ; Selvaraj, Sharika Krishnaveni ; Sankarappan, Subburaj ; Subramaniam, Murugavalli</creator><contributor>Al-Turjman, Fadi ; Balas, Valentina Emilia ; Rodrigues, Joel J. P. C. ; Malathi, S. ; Kumar, V. D. Ambeth</contributor><creatorcontrib>Kuppuswamy, Ashwini ; Rajan, Preethi Vannia ; Selvaraj, Sharika Krishnaveni ; Sankarappan, Subburaj ; Subramaniam, Murugavalli ; Al-Turjman, Fadi ; Balas, Valentina Emilia ; Rodrigues, Joel J. P. C. ; Malathi, S. ; Kumar, V. D. Ambeth</creatorcontrib><description>As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of consideration on the worldwide phase of examination about PC vision. The Internet of things assigns actual articles that are inserted with sensors, regulation capacity, programming, and different advancements that associate and trade information with different gadgets and frameworks over the Internet or different foundations organizations. Applying profound brain organizations to IOT gadgets could achieve an age of requesting equipped for performing complex detecting and acknowledgment errands to help another domain of collaborations among people and their actual airs. We have involved a high-level processor Raspberry pi for viable speed and remote capacities. This paper includes the plan of elements for depicting the article and facial qualities followed by reconciliation with classifiers. Haar Cascade classifier is a successful for articles and face identification method. It is an item openness calculation used to distinguish faces in a picture or a constant video.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0153559</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Classifiers ; Computer vision ; Deep learning ; Face recognition ; Identification methods ; Internet of Things ; Machine learning ; Microprocessors ; Object recognition ; Organizations</subject><ispartof>AIP conference proceedings, 2023, Vol.2790 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0153559$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Al-Turjman, Fadi</contributor><contributor>Balas, Valentina Emilia</contributor><contributor>Rodrigues, Joel J. P. C.</contributor><contributor>Malathi, S.</contributor><contributor>Kumar, V. D. Ambeth</contributor><creatorcontrib>Kuppuswamy, Ashwini</creatorcontrib><creatorcontrib>Rajan, Preethi Vannia</creatorcontrib><creatorcontrib>Selvaraj, Sharika Krishnaveni</creatorcontrib><creatorcontrib>Sankarappan, Subburaj</creatorcontrib><creatorcontrib>Subramaniam, Murugavalli</creatorcontrib><title>Object detection and facial recognition for the blind using deep learning and IoT</title><title>AIP conference proceedings</title><description>As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of consideration on the worldwide phase of examination about PC vision. The Internet of things assigns actual articles that are inserted with sensors, regulation capacity, programming, and different advancements that associate and trade information with different gadgets and frameworks over the Internet or different foundations organizations. Applying profound brain organizations to IOT gadgets could achieve an age of requesting equipped for performing complex detecting and acknowledgment errands to help another domain of collaborations among people and their actual airs. We have involved a high-level processor Raspberry pi for viable speed and remote capacities. This paper includes the plan of elements for depicting the article and facial qualities followed by reconciliation with classifiers. Haar Cascade classifier is a successful for articles and face identification method. It is an item openness calculation used to distinguish faces in a picture or a constant video.</description><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Face recognition</subject><subject>Identification methods</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Microprocessors</subject><subject>Object recognition</subject><subject>Organizations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv0HAm7A1k2ySzVGK1kKhCBW8hfytKevumt0e_Pbu2p4eM_zeDO8hdA9kAUSwJ74gwBnn6gLNgHMopABxiWaEqLKgJfu8Rjd9fyCEKimrGXrf2kNwA_ZhGCW1DTaNx9G4ZGqcg2v3Tfpfxzbj4StgW6cROPap2Y-m0OE6mNxM02Rct7tbdBVN3Ye7s87Rx-vLbvlWbLar9fJ5U3TA2FA4qCSYMgoLUlXCRuoFC055Z4kJ0UuhGPGl9YKbKgpvmCgpJc6W3DPgis3Rw-lul9ufY-gHfWiPuRlfalpxIUByCiP1eKJ6lwYzJdFdTt8m_2ogeqpMc32ujP0BiERdWQ</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Kuppuswamy, Ashwini</creator><creator>Rajan, Preethi Vannia</creator><creator>Selvaraj, Sharika Krishnaveni</creator><creator>Sankarappan, Subburaj</creator><creator>Subramaniam, Murugavalli</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230824</creationdate><title>Object detection and facial recognition for the blind using deep learning and IoT</title><author>Kuppuswamy, Ashwini ; Rajan, Preethi Vannia ; Selvaraj, Sharika Krishnaveni ; Sankarappan, Subburaj ; Subramaniam, Murugavalli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-c1871a4f6b17986bf2d63ec9dcb0aefd76930d4bd65a8f6da364220cb45d31593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Face recognition</topic><topic>Identification methods</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Microprocessors</topic><topic>Object recognition</topic><topic>Organizations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuppuswamy, Ashwini</creatorcontrib><creatorcontrib>Rajan, Preethi Vannia</creatorcontrib><creatorcontrib>Selvaraj, Sharika Krishnaveni</creatorcontrib><creatorcontrib>Sankarappan, Subburaj</creatorcontrib><creatorcontrib>Subramaniam, Murugavalli</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuppuswamy, Ashwini</au><au>Rajan, Preethi Vannia</au><au>Selvaraj, Sharika Krishnaveni</au><au>Sankarappan, Subburaj</au><au>Subramaniam, Murugavalli</au><au>Al-Turjman, Fadi</au><au>Balas, Valentina Emilia</au><au>Rodrigues, Joel J. P. C.</au><au>Malathi, S.</au><au>Kumar, V. D. Ambeth</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Object detection and facial recognition for the blind using deep learning and IoT</atitle><btitle>AIP conference proceedings</btitle><date>2023-08-24</date><risdate>2023</risdate><volume>2790</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of consideration on the worldwide phase of examination about PC vision. The Internet of things assigns actual articles that are inserted with sensors, regulation capacity, programming, and different advancements that associate and trade information with different gadgets and frameworks over the Internet or different foundations organizations. Applying profound brain organizations to IOT gadgets could achieve an age of requesting equipped for performing complex detecting and acknowledgment errands to help another domain of collaborations among people and their actual airs. We have involved a high-level processor Raspberry pi for viable speed and remote capacities. This paper includes the plan of elements for depicting the article and facial qualities followed by reconciliation with classifiers. Haar Cascade classifier is a successful for articles and face identification method. It is an item openness calculation used to distinguish faces in a picture or a constant video.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0153559</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2790 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2856617521 |
source | AIP Journals Complete |
subjects | Artificial neural networks Classifiers Computer vision Deep learning Face recognition Identification methods Internet of Things Machine learning Microprocessors Object recognition Organizations |
title | Object detection and facial recognition for the blind using deep learning and IoT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Object%20detection%20and%20facial%20recognition%20for%20the%20blind%20using%20deep%20learning%20and%20IoT&rft.btitle=AIP%20conference%20proceedings&rft.au=Kuppuswamy,%20Ashwini&rft.date=2023-08-24&rft.volume=2790&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0153559&rft_dat=%3Cproquest_scita%3E2856617521%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856617521&rft_id=info:pmid/&rfr_iscdi=true |