Object detection and facial recognition for the blind using deep learning and IoT

As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of considerat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuppuswamy, Ashwini, Rajan, Preethi Vannia, Selvaraj, Sharika Krishnaveni, Sankarappan, Subburaj, Subramaniam, Murugavalli
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2790
creator Kuppuswamy, Ashwini
Rajan, Preethi Vannia
Selvaraj, Sharika Krishnaveni
Sankarappan, Subburaj
Subramaniam, Murugavalli
description As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of consideration on the worldwide phase of examination about PC vision. The Internet of things assigns actual articles that are inserted with sensors, regulation capacity, programming, and different advancements that associate and trade information with different gadgets and frameworks over the Internet or different foundations organizations. Applying profound brain organizations to IOT gadgets could achieve an age of requesting equipped for performing complex detecting and acknowledgment errands to help another domain of collaborations among people and their actual airs. We have involved a high-level processor Raspberry pi for viable speed and remote capacities. This paper includes the plan of elements for depicting the article and facial qualities followed by reconciliation with classifiers. Haar Cascade classifier is a successful for articles and face identification method. It is an item openness calculation used to distinguish faces in a picture or a constant video.
doi_str_mv 10.1063/5.0153559
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2856617521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856617521</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-c1871a4f6b17986bf2d63ec9dcb0aefd76930d4bd65a8f6da364220cb45d31593</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv0HAm7A1k2ySzVGK1kKhCBW8hfytKevumt0e_Pbu2p4eM_zeDO8hdA9kAUSwJ74gwBnn6gLNgHMopABxiWaEqLKgJfu8Rjd9fyCEKimrGXrf2kNwA_ZhGCW1DTaNx9G4ZGqcg2v3Tfpfxzbj4StgW6cROPap2Y-m0OE6mNxM02Rct7tbdBVN3Ye7s87Rx-vLbvlWbLar9fJ5U3TA2FA4qCSYMgoLUlXCRuoFC055Z4kJ0UuhGPGl9YKbKgpvmCgpJc6W3DPgis3Rw-lul9ufY-gHfWiPuRlfalpxIUByCiP1eKJ6lwYzJdFdTt8m_2ogeqpMc32ujP0BiERdWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2856617521</pqid></control><display><type>conference_proceeding</type><title>Object detection and facial recognition for the blind using deep learning and IoT</title><source>AIP Journals Complete</source><creator>Kuppuswamy, Ashwini ; Rajan, Preethi Vannia ; Selvaraj, Sharika Krishnaveni ; Sankarappan, Subburaj ; Subramaniam, Murugavalli</creator><contributor>Al-Turjman, Fadi ; Balas, Valentina Emilia ; Rodrigues, Joel J. P. C. ; Malathi, S. ; Kumar, V. D. Ambeth</contributor><creatorcontrib>Kuppuswamy, Ashwini ; Rajan, Preethi Vannia ; Selvaraj, Sharika Krishnaveni ; Sankarappan, Subburaj ; Subramaniam, Murugavalli ; Al-Turjman, Fadi ; Balas, Valentina Emilia ; Rodrigues, Joel J. P. C. ; Malathi, S. ; Kumar, V. D. Ambeth</creatorcontrib><description>As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of consideration on the worldwide phase of examination about PC vision. The Internet of things assigns actual articles that are inserted with sensors, regulation capacity, programming, and different advancements that associate and trade information with different gadgets and frameworks over the Internet or different foundations organizations. Applying profound brain organizations to IOT gadgets could achieve an age of requesting equipped for performing complex detecting and acknowledgment errands to help another domain of collaborations among people and their actual airs. We have involved a high-level processor Raspberry pi for viable speed and remote capacities. This paper includes the plan of elements for depicting the article and facial qualities followed by reconciliation with classifiers. Haar Cascade classifier is a successful for articles and face identification method. It is an item openness calculation used to distinguish faces in a picture or a constant video.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0153559</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Classifiers ; Computer vision ; Deep learning ; Face recognition ; Identification methods ; Internet of Things ; Machine learning ; Microprocessors ; Object recognition ; Organizations</subject><ispartof>AIP conference proceedings, 2023, Vol.2790 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0153559$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Al-Turjman, Fadi</contributor><contributor>Balas, Valentina Emilia</contributor><contributor>Rodrigues, Joel J. P. C.</contributor><contributor>Malathi, S.</contributor><contributor>Kumar, V. D. Ambeth</contributor><creatorcontrib>Kuppuswamy, Ashwini</creatorcontrib><creatorcontrib>Rajan, Preethi Vannia</creatorcontrib><creatorcontrib>Selvaraj, Sharika Krishnaveni</creatorcontrib><creatorcontrib>Sankarappan, Subburaj</creatorcontrib><creatorcontrib>Subramaniam, Murugavalli</creatorcontrib><title>Object detection and facial recognition for the blind using deep learning and IoT</title><title>AIP conference proceedings</title><description>As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of consideration on the worldwide phase of examination about PC vision. The Internet of things assigns actual articles that are inserted with sensors, regulation capacity, programming, and different advancements that associate and trade information with different gadgets and frameworks over the Internet or different foundations organizations. Applying profound brain organizations to IOT gadgets could achieve an age of requesting equipped for performing complex detecting and acknowledgment errands to help another domain of collaborations among people and their actual airs. We have involved a high-level processor Raspberry pi for viable speed and remote capacities. This paper includes the plan of elements for depicting the article and facial qualities followed by reconciliation with classifiers. Haar Cascade classifier is a successful for articles and face identification method. It is an item openness calculation used to distinguish faces in a picture or a constant video.</description><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Face recognition</subject><subject>Identification methods</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Microprocessors</subject><subject>Object recognition</subject><subject>Organizations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv0HAm7A1k2ySzVGK1kKhCBW8hfytKevumt0e_Pbu2p4eM_zeDO8hdA9kAUSwJ74gwBnn6gLNgHMopABxiWaEqLKgJfu8Rjd9fyCEKimrGXrf2kNwA_ZhGCW1DTaNx9G4ZGqcg2v3Tfpfxzbj4StgW6cROPap2Y-m0OE6mNxM02Rct7tbdBVN3Ye7s87Rx-vLbvlWbLar9fJ5U3TA2FA4qCSYMgoLUlXCRuoFC055Z4kJ0UuhGPGl9YKbKgpvmCgpJc6W3DPgis3Rw-lul9ufY-gHfWiPuRlfalpxIUByCiP1eKJ6lwYzJdFdTt8m_2ogeqpMc32ujP0BiERdWQ</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Kuppuswamy, Ashwini</creator><creator>Rajan, Preethi Vannia</creator><creator>Selvaraj, Sharika Krishnaveni</creator><creator>Sankarappan, Subburaj</creator><creator>Subramaniam, Murugavalli</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230824</creationdate><title>Object detection and facial recognition for the blind using deep learning and IoT</title><author>Kuppuswamy, Ashwini ; Rajan, Preethi Vannia ; Selvaraj, Sharika Krishnaveni ; Sankarappan, Subburaj ; Subramaniam, Murugavalli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-c1871a4f6b17986bf2d63ec9dcb0aefd76930d4bd65a8f6da364220cb45d31593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Face recognition</topic><topic>Identification methods</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Microprocessors</topic><topic>Object recognition</topic><topic>Organizations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuppuswamy, Ashwini</creatorcontrib><creatorcontrib>Rajan, Preethi Vannia</creatorcontrib><creatorcontrib>Selvaraj, Sharika Krishnaveni</creatorcontrib><creatorcontrib>Sankarappan, Subburaj</creatorcontrib><creatorcontrib>Subramaniam, Murugavalli</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuppuswamy, Ashwini</au><au>Rajan, Preethi Vannia</au><au>Selvaraj, Sharika Krishnaveni</au><au>Sankarappan, Subburaj</au><au>Subramaniam, Murugavalli</au><au>Al-Turjman, Fadi</au><au>Balas, Valentina Emilia</au><au>Rodrigues, Joel J. P. C.</au><au>Malathi, S.</au><au>Kumar, V. D. Ambeth</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Object detection and facial recognition for the blind using deep learning and IoT</atitle><btitle>AIP conference proceedings</btitle><date>2023-08-24</date><risdate>2023</risdate><volume>2790</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>As part of computer vision theory, study and application, object detection and facial recognition continue to be important. In recent years, Deep Learning and specifically Convolutional Neural Networks (CNN) have elicited a great deal of advancement. Also, has consequently gotten a lot of consideration on the worldwide phase of examination about PC vision. The Internet of things assigns actual articles that are inserted with sensors, regulation capacity, programming, and different advancements that associate and trade information with different gadgets and frameworks over the Internet or different foundations organizations. Applying profound brain organizations to IOT gadgets could achieve an age of requesting equipped for performing complex detecting and acknowledgment errands to help another domain of collaborations among people and their actual airs. We have involved a high-level processor Raspberry pi for viable speed and remote capacities. This paper includes the plan of elements for depicting the article and facial qualities followed by reconciliation with classifiers. Haar Cascade classifier is a successful for articles and face identification method. It is an item openness calculation used to distinguish faces in a picture or a constant video.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0153559</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2790 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2856617521
source AIP Journals Complete
subjects Artificial neural networks
Classifiers
Computer vision
Deep learning
Face recognition
Identification methods
Internet of Things
Machine learning
Microprocessors
Object recognition
Organizations
title Object detection and facial recognition for the blind using deep learning and IoT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Object%20detection%20and%20facial%20recognition%20for%20the%20blind%20using%20deep%20learning%20and%20IoT&rft.btitle=AIP%20conference%20proceedings&rft.au=Kuppuswamy,%20Ashwini&rft.date=2023-08-24&rft.volume=2790&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0153559&rft_dat=%3Cproquest_scita%3E2856617521%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856617521&rft_id=info:pmid/&rfr_iscdi=true