Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains

The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2023-06, Vol.59 (6), p.833-846
Hauptverfasser: Morozov, A. Yu, Reviznikov, D. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 846
container_issue 6
container_start_page 833
container_title Differential equations
container_volume 59
creator Morozov, A. Yu
Reviznikov, D. L.
description The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated.
doi_str_mv 10.1134/S0012266123060113
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2856414548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762013353</galeid><sourcerecordid>A762013353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4173c67e0f4ba05370478e22552eced8afbd5f81a23642166288fe8a1b113bef3</originalsourceid><addsrcrecordid>eNp1kclKBDEQhoMoOC4P4C3guTVLJx2PgzsIiqN4bDLpShvpTsYkg8wb-NhmGMWDSB1Sy_9VJSmEjig5oZTXpzNCKGNSUsaJJCW1hSZUElVxovg2mqzL1bq-i_ZSeiOEnDVUTNDnbHCd8z1-cb4LH3g69CG6_DpiGyJ-0FGPkKMz-LYDn511RmcXPA4WX6y8Hks84NkqZRgT_iggfgSTte-Xg45Y-w5fDoNbpOC6n24Q8bM3ELN2Pq_wRRiLkw7QjtVDgsPvcx89X10-nd9Ud_fXt-fTu8pwIXJV04Yb2QCx9VwTwRtSNwoYE4KBgU5pO--EVVQzLmtGpWRKWVCazsufzMHyfXS86buI4X0JKbdvYRl9GdkyJWRNa1GrojrZqHo9QOu8DTlqU6yD8uTgwbqSnzaSEcq54AWgG8DEkFIE2y6iG3VctZS06w21fzZUGLZhUtH6HuLvVf6HvgAm25O7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856414548</pqid></control><display><type>article</type><title>Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains</title><source>Springer Nature - Complete Springer Journals</source><creator>Morozov, A. Yu ; Reviznikov, D. L.</creator><creatorcontrib>Morozov, A. Yu ; Reviznikov, D. L.</creatorcontrib><description>The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266123060113</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adaptive algorithms ; Algorithms ; Difference and Functional Equations ; Differential equations ; Domains ; Dynamical systems ; Interpolation ; Mathematics ; Mathematics and Statistics ; Numerical Methods ; Ordinary Differential Equations ; Parameter identification ; Parameter uncertainty ; Partial Differential Equations ; Sliding</subject><ispartof>Differential equations, 2023-06, Vol.59 (6), p.833-846</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4173c67e0f4ba05370478e22552eced8afbd5f81a23642166288fe8a1b113bef3</citedby><cites>FETCH-LOGICAL-c355t-4173c67e0f4ba05370478e22552eced8afbd5f81a23642166288fe8a1b113bef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266123060113$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266123060113$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Morozov, A. Yu</creatorcontrib><creatorcontrib>Reviznikov, D. L.</creatorcontrib><title>Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Domains</subject><subject>Dynamical systems</subject><subject>Interpolation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Methods</subject><subject>Ordinary Differential Equations</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Partial Differential Equations</subject><subject>Sliding</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kclKBDEQhoMoOC4P4C3guTVLJx2PgzsIiqN4bDLpShvpTsYkg8wb-NhmGMWDSB1Sy_9VJSmEjig5oZTXpzNCKGNSUsaJJCW1hSZUElVxovg2mqzL1bq-i_ZSeiOEnDVUTNDnbHCd8z1-cb4LH3g69CG6_DpiGyJ-0FGPkKMz-LYDn511RmcXPA4WX6y8Hks84NkqZRgT_iggfgSTte-Xg45Y-w5fDoNbpOC6n24Q8bM3ELN2Pq_wRRiLkw7QjtVDgsPvcx89X10-nd9Ud_fXt-fTu8pwIXJV04Yb2QCx9VwTwRtSNwoYE4KBgU5pO--EVVQzLmtGpWRKWVCazsufzMHyfXS86buI4X0JKbdvYRl9GdkyJWRNa1GrojrZqHo9QOu8DTlqU6yD8uTgwbqSnzaSEcq54AWgG8DEkFIE2y6iG3VctZS06w21fzZUGLZhUtH6HuLvVf6HvgAm25O7</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Morozov, A. Yu</creator><creator>Reviznikov, D. L.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230601</creationdate><title>Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains</title><author>Morozov, A. Yu ; Reviznikov, D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4173c67e0f4ba05370478e22552eced8afbd5f81a23642166288fe8a1b113bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Domains</topic><topic>Dynamical systems</topic><topic>Interpolation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Methods</topic><topic>Ordinary Differential Equations</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Partial Differential Equations</topic><topic>Sliding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morozov, A. Yu</creatorcontrib><creatorcontrib>Reviznikov, D. L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morozov, A. Yu</au><au>Reviznikov, D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>833</spage><epage>846</epage><pages>833-846</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266123060113</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2023-06, Vol.59 (6), p.833-846
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2856414548
source Springer Nature - Complete Springer Journals
subjects Adaptive algorithms
Algorithms
Difference and Functional Equations
Differential equations
Domains
Dynamical systems
Interpolation
Mathematics
Mathematics and Statistics
Numerical Methods
Ordinary Differential Equations
Parameter identification
Parameter uncertainty
Partial Differential Equations
Sliding
title Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20Window%20Algorithm%20for%20Parametric%20Identification%20of%20Dynamical%20Systems%20with%20Rectangular%20and%20Ellipsoid%20Parameter%20Uncertainty%20Domains&rft.jtitle=Differential%20equations&rft.au=Morozov,%20A.%20Yu&rft.date=2023-06-01&rft.volume=59&rft.issue=6&rft.spage=833&rft.epage=846&rft.pages=833-846&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266123060113&rft_dat=%3Cgale_proqu%3EA762013353%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856414548&rft_id=info:pmid/&rft_galeid=A762013353&rfr_iscdi=true