Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains
The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set....
Gespeichert in:
Veröffentlicht in: | Differential equations 2023-06, Vol.59 (6), p.833-846 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 846 |
---|---|
container_issue | 6 |
container_start_page | 833 |
container_title | Differential equations |
container_volume | 59 |
creator | Morozov, A. Yu Reviznikov, D. L. |
description | The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated. |
doi_str_mv | 10.1134/S0012266123060113 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2856414548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762013353</galeid><sourcerecordid>A762013353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4173c67e0f4ba05370478e22552eced8afbd5f81a23642166288fe8a1b113bef3</originalsourceid><addsrcrecordid>eNp1kclKBDEQhoMoOC4P4C3guTVLJx2PgzsIiqN4bDLpShvpTsYkg8wb-NhmGMWDSB1Sy_9VJSmEjig5oZTXpzNCKGNSUsaJJCW1hSZUElVxovg2mqzL1bq-i_ZSeiOEnDVUTNDnbHCd8z1-cb4LH3g69CG6_DpiGyJ-0FGPkKMz-LYDn511RmcXPA4WX6y8Hks84NkqZRgT_iggfgSTte-Xg45Y-w5fDoNbpOC6n24Q8bM3ELN2Pq_wRRiLkw7QjtVDgsPvcx89X10-nd9Ud_fXt-fTu8pwIXJV04Yb2QCx9VwTwRtSNwoYE4KBgU5pO--EVVQzLmtGpWRKWVCazsufzMHyfXS86buI4X0JKbdvYRl9GdkyJWRNa1GrojrZqHo9QOu8DTlqU6yD8uTgwbqSnzaSEcq54AWgG8DEkFIE2y6iG3VctZS06w21fzZUGLZhUtH6HuLvVf6HvgAm25O7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856414548</pqid></control><display><type>article</type><title>Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains</title><source>Springer Nature - Complete Springer Journals</source><creator>Morozov, A. Yu ; Reviznikov, D. L.</creator><creatorcontrib>Morozov, A. Yu ; Reviznikov, D. L.</creatorcontrib><description>The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266123060113</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adaptive algorithms ; Algorithms ; Difference and Functional Equations ; Differential equations ; Domains ; Dynamical systems ; Interpolation ; Mathematics ; Mathematics and Statistics ; Numerical Methods ; Ordinary Differential Equations ; Parameter identification ; Parameter uncertainty ; Partial Differential Equations ; Sliding</subject><ispartof>Differential equations, 2023-06, Vol.59 (6), p.833-846</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4173c67e0f4ba05370478e22552eced8afbd5f81a23642166288fe8a1b113bef3</citedby><cites>FETCH-LOGICAL-c355t-4173c67e0f4ba05370478e22552eced8afbd5f81a23642166288fe8a1b113bef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266123060113$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266123060113$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Morozov, A. Yu</creatorcontrib><creatorcontrib>Reviznikov, D. L.</creatorcontrib><title>Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Domains</subject><subject>Dynamical systems</subject><subject>Interpolation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Methods</subject><subject>Ordinary Differential Equations</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Partial Differential Equations</subject><subject>Sliding</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kclKBDEQhoMoOC4P4C3guTVLJx2PgzsIiqN4bDLpShvpTsYkg8wb-NhmGMWDSB1Sy_9VJSmEjig5oZTXpzNCKGNSUsaJJCW1hSZUElVxovg2mqzL1bq-i_ZSeiOEnDVUTNDnbHCd8z1-cb4LH3g69CG6_DpiGyJ-0FGPkKMz-LYDn511RmcXPA4WX6y8Hks84NkqZRgT_iggfgSTte-Xg45Y-w5fDoNbpOC6n24Q8bM3ELN2Pq_wRRiLkw7QjtVDgsPvcx89X10-nd9Ud_fXt-fTu8pwIXJV04Yb2QCx9VwTwRtSNwoYE4KBgU5pO--EVVQzLmtGpWRKWVCazsufzMHyfXS86buI4X0JKbdvYRl9GdkyJWRNa1GrojrZqHo9QOu8DTlqU6yD8uTgwbqSnzaSEcq54AWgG8DEkFIE2y6iG3VctZS06w21fzZUGLZhUtH6HuLvVf6HvgAm25O7</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Morozov, A. Yu</creator><creator>Reviznikov, D. L.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230601</creationdate><title>Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains</title><author>Morozov, A. Yu ; Reviznikov, D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4173c67e0f4ba05370478e22552eced8afbd5f81a23642166288fe8a1b113bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Domains</topic><topic>Dynamical systems</topic><topic>Interpolation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Methods</topic><topic>Ordinary Differential Equations</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Partial Differential Equations</topic><topic>Sliding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morozov, A. Yu</creatorcontrib><creatorcontrib>Reviznikov, D. L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morozov, A. Yu</au><au>Reviznikov, D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>833</spage><epage>846</epage><pages>833-846</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266123060113</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2023-06, Vol.59 (6), p.833-846 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_2856414548 |
source | Springer Nature - Complete Springer Journals |
subjects | Adaptive algorithms Algorithms Difference and Functional Equations Differential equations Domains Dynamical systems Interpolation Mathematics Mathematics and Statistics Numerical Methods Ordinary Differential Equations Parameter identification Parameter uncertainty Partial Differential Equations Sliding |
title | Sliding Window Algorithm for Parametric Identification of Dynamical Systems with Rectangular and Ellipsoid Parameter Uncertainty Domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20Window%20Algorithm%20for%20Parametric%20Identification%20of%20Dynamical%20Systems%20with%20Rectangular%20and%20Ellipsoid%20Parameter%20Uncertainty%20Domains&rft.jtitle=Differential%20equations&rft.au=Morozov,%20A.%20Yu&rft.date=2023-06-01&rft.volume=59&rft.issue=6&rft.spage=833&rft.epage=846&rft.pages=833-846&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266123060113&rft_dat=%3Cgale_proqu%3EA762013353%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856414548&rft_id=info:pmid/&rft_galeid=A762013353&rfr_iscdi=true |