Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices

In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the in situ plasma treatment introduced into atomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-08, Vol.11 (33), p.11195-1123
Hauptverfasser: Ling, Chen-Hsiang, Mo, Chi-Lin, Chuang, Chun-Ho, Shyue, Jing-Jong, Chen, Miin-Jang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1123
container_issue 33
container_start_page 11195
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 11
creator Ling, Chen-Hsiang
Mo, Chi-Lin
Chuang, Chun-Ho
Shyue, Jing-Jong
Chen, Miin-Jang
description In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the in situ plasma treatment introduced into atomic layer deposition, was used to modulate the film quality of the AlN switching layer with a thickness of only 3.3 nm. The ALA treatment is capable of tailoring nitrogen vacancies in the AlN layer with monolayer accuracy, leading to a decrease in the operating voltage and an improvement in uniformity of the resistive switching characteristics. In addition, the AlN RRAM devices exhibit pulse endurance over 10 4 cycles and retention of more than 10 6 s at 125 °C. The result demonstrates that the resistive switching properties of RRAMs can be controlled by the precise atomic layer engineering of each monolayer. This study demonstrates the precise tailoring of material properties of nanoscale thin films and electrical properties of AlN RRAM devices by atomic layer annealing.
doi_str_mv 10.1039/d3tc00542a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2856285070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856285070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-1c4cb580b6a865d453d25f8be033382991de704f72ca06a4166f200f9f5845b03</originalsourceid><addsrcrecordid>eNpNkEtLAzEQgIMoWGov3oWAN2F18tzscalPKHqp5yWbTWpKN1uTbaX_3q2V6sAwDz5m4EPoksAtAVbcNaw3AIJTfYJGFARkuWD89NhTeY4mKS1hCEWkksUIubLvWm_wSu9sxDYsfLA2-rDAXcDRJp96v7U4ffnefOzXPuC0qTOOQ4vL1es_JurQdC3WxtiUcGvbLu5wY7d-mC_QmdOrZCe_dYzeHx_m0-ds9vb0Mi1nmaGK9Bkx3NRCQS21kqLhgjVUOFVbYIwpWhSksTlwl1OjQWpOpHQUwBVOKC5qYGN0fbi7jt3nxqa-WnabGIaXFVVCDgn5nro5UCZ2KUXrqnX0rY67ikC1V1nds_n0R2U5wFcHOCZz5P5Us28QJW-e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856285070</pqid></control><display><type>article</type><title>Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ling, Chen-Hsiang ; Mo, Chi-Lin ; Chuang, Chun-Ho ; Shyue, Jing-Jong ; Chen, Miin-Jang</creator><creatorcontrib>Ling, Chen-Hsiang ; Mo, Chi-Lin ; Chuang, Chun-Ho ; Shyue, Jing-Jong ; Chen, Miin-Jang</creatorcontrib><description>In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the in situ plasma treatment introduced into atomic layer deposition, was used to modulate the film quality of the AlN switching layer with a thickness of only 3.3 nm. The ALA treatment is capable of tailoring nitrogen vacancies in the AlN layer with monolayer accuracy, leading to a decrease in the operating voltage and an improvement in uniformity of the resistive switching characteristics. In addition, the AlN RRAM devices exhibit pulse endurance over 10 4 cycles and retention of more than 10 6 s at 125 °C. The result demonstrates that the resistive switching properties of RRAMs can be controlled by the precise atomic layer engineering of each monolayer. This study demonstrates the precise tailoring of material properties of nanoscale thin films and electrical properties of AlN RRAM devices by atomic layer annealing.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc00542a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum nitride ; Atomic layer epitaxy ; Energy transfer ; Memory devices ; Monolayers ; Random access memory ; Switching ; Thickness</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-08, Vol.11 (33), p.11195-1123</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-1c4cb580b6a865d453d25f8be033382991de704f72ca06a4166f200f9f5845b03</citedby><cites>FETCH-LOGICAL-c281t-1c4cb580b6a865d453d25f8be033382991de704f72ca06a4166f200f9f5845b03</cites><orcidid>0000-0001-7124-5476 ; 0000-0002-8508-659X ; 0000-0002-9408-8327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ling, Chen-Hsiang</creatorcontrib><creatorcontrib>Mo, Chi-Lin</creatorcontrib><creatorcontrib>Chuang, Chun-Ho</creatorcontrib><creatorcontrib>Shyue, Jing-Jong</creatorcontrib><creatorcontrib>Chen, Miin-Jang</creatorcontrib><title>Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the in situ plasma treatment introduced into atomic layer deposition, was used to modulate the film quality of the AlN switching layer with a thickness of only 3.3 nm. The ALA treatment is capable of tailoring nitrogen vacancies in the AlN layer with monolayer accuracy, leading to a decrease in the operating voltage and an improvement in uniformity of the resistive switching characteristics. In addition, the AlN RRAM devices exhibit pulse endurance over 10 4 cycles and retention of more than 10 6 s at 125 °C. The result demonstrates that the resistive switching properties of RRAMs can be controlled by the precise atomic layer engineering of each monolayer. This study demonstrates the precise tailoring of material properties of nanoscale thin films and electrical properties of AlN RRAM devices by atomic layer annealing.</description><subject>Aluminum nitride</subject><subject>Atomic layer epitaxy</subject><subject>Energy transfer</subject><subject>Memory devices</subject><subject>Monolayers</subject><subject>Random access memory</subject><subject>Switching</subject><subject>Thickness</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEQgIMoWGov3oWAN2F18tzscalPKHqp5yWbTWpKN1uTbaX_3q2V6sAwDz5m4EPoksAtAVbcNaw3AIJTfYJGFARkuWD89NhTeY4mKS1hCEWkksUIubLvWm_wSu9sxDYsfLA2-rDAXcDRJp96v7U4ffnefOzXPuC0qTOOQ4vL1es_JurQdC3WxtiUcGvbLu5wY7d-mC_QmdOrZCe_dYzeHx_m0-ds9vb0Mi1nmaGK9Bkx3NRCQS21kqLhgjVUOFVbYIwpWhSksTlwl1OjQWpOpHQUwBVOKC5qYGN0fbi7jt3nxqa-WnabGIaXFVVCDgn5nro5UCZ2KUXrqnX0rY67ikC1V1nds_n0R2U5wFcHOCZz5P5Us28QJW-e</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Ling, Chen-Hsiang</creator><creator>Mo, Chi-Lin</creator><creator>Chuang, Chun-Ho</creator><creator>Shyue, Jing-Jong</creator><creator>Chen, Miin-Jang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7124-5476</orcidid><orcidid>https://orcid.org/0000-0002-8508-659X</orcidid><orcidid>https://orcid.org/0000-0002-9408-8327</orcidid></search><sort><creationdate>20230824</creationdate><title>Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices</title><author>Ling, Chen-Hsiang ; Mo, Chi-Lin ; Chuang, Chun-Ho ; Shyue, Jing-Jong ; Chen, Miin-Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-1c4cb580b6a865d453d25f8be033382991de704f72ca06a4166f200f9f5845b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum nitride</topic><topic>Atomic layer epitaxy</topic><topic>Energy transfer</topic><topic>Memory devices</topic><topic>Monolayers</topic><topic>Random access memory</topic><topic>Switching</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Chen-Hsiang</creatorcontrib><creatorcontrib>Mo, Chi-Lin</creatorcontrib><creatorcontrib>Chuang, Chun-Ho</creatorcontrib><creatorcontrib>Shyue, Jing-Jong</creatorcontrib><creatorcontrib>Chen, Miin-Jang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Chen-Hsiang</au><au>Mo, Chi-Lin</au><au>Chuang, Chun-Ho</au><au>Shyue, Jing-Jong</au><au>Chen, Miin-Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-08-24</date><risdate>2023</risdate><volume>11</volume><issue>33</issue><spage>11195</spage><epage>1123</epage><pages>11195-1123</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the in situ plasma treatment introduced into atomic layer deposition, was used to modulate the film quality of the AlN switching layer with a thickness of only 3.3 nm. The ALA treatment is capable of tailoring nitrogen vacancies in the AlN layer with monolayer accuracy, leading to a decrease in the operating voltage and an improvement in uniformity of the resistive switching characteristics. In addition, the AlN RRAM devices exhibit pulse endurance over 10 4 cycles and retention of more than 10 6 s at 125 °C. The result demonstrates that the resistive switching properties of RRAMs can be controlled by the precise atomic layer engineering of each monolayer. This study demonstrates the precise tailoring of material properties of nanoscale thin films and electrical properties of AlN RRAM devices by atomic layer annealing.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tc00542a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7124-5476</orcidid><orcidid>https://orcid.org/0000-0002-8508-659X</orcidid><orcidid>https://orcid.org/0000-0002-9408-8327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-08, Vol.11 (33), p.11195-1123
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2856285070
source Royal Society Of Chemistry Journals 2008-
subjects Aluminum nitride
Atomic layer epitaxy
Energy transfer
Memory devices
Monolayers
Random access memory
Switching
Thickness
title Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20layer%20engineering%20on%20resistive%20switching%20in%20sub-4%20nm%20AlN%20resistive%20random%20access%20memory%20devices&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Ling,%20Chen-Hsiang&rft.date=2023-08-24&rft.volume=11&rft.issue=33&rft.spage=11195&rft.epage=1123&rft.pages=11195-1123&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc00542a&rft_dat=%3Cproquest_rsc_p%3E2856285070%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856285070&rft_id=info:pmid/&rfr_iscdi=true