Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices
In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the in situ plasma treatment introduced into atomi...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-08, Vol.11 (33), p.11195-1123 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1123 |
---|---|
container_issue | 33 |
container_start_page | 11195 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 11 |
creator | Ling, Chen-Hsiang Mo, Chi-Lin Chuang, Chun-Ho Shyue, Jing-Jong Chen, Miin-Jang |
description | In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the
in situ
plasma treatment introduced into atomic layer deposition, was used to modulate the film quality of the AlN switching layer with a thickness of only 3.3 nm. The ALA treatment is capable of tailoring nitrogen vacancies in the AlN layer with monolayer accuracy, leading to a decrease in the operating voltage and an improvement in uniformity of the resistive switching characteristics. In addition, the AlN RRAM devices exhibit pulse endurance over 10
4
cycles and retention of more than 10
6
s at 125 °C. The result demonstrates that the resistive switching properties of RRAMs can be controlled by the precise atomic layer engineering of each monolayer.
This study demonstrates the precise tailoring of material properties of nanoscale thin films and electrical properties of AlN RRAM devices by atomic layer annealing. |
doi_str_mv | 10.1039/d3tc00542a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2856285070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856285070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-1c4cb580b6a865d453d25f8be033382991de704f72ca06a4166f200f9f5845b03</originalsourceid><addsrcrecordid>eNpNkEtLAzEQgIMoWGov3oWAN2F18tzscalPKHqp5yWbTWpKN1uTbaX_3q2V6sAwDz5m4EPoksAtAVbcNaw3AIJTfYJGFARkuWD89NhTeY4mKS1hCEWkksUIubLvWm_wSu9sxDYsfLA2-rDAXcDRJp96v7U4ffnefOzXPuC0qTOOQ4vL1es_JurQdC3WxtiUcGvbLu5wY7d-mC_QmdOrZCe_dYzeHx_m0-ds9vb0Mi1nmaGK9Bkx3NRCQS21kqLhgjVUOFVbYIwpWhSksTlwl1OjQWpOpHQUwBVOKC5qYGN0fbi7jt3nxqa-WnabGIaXFVVCDgn5nro5UCZ2KUXrqnX0rY67ikC1V1nds_n0R2U5wFcHOCZz5P5Us28QJW-e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856285070</pqid></control><display><type>article</type><title>Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ling, Chen-Hsiang ; Mo, Chi-Lin ; Chuang, Chun-Ho ; Shyue, Jing-Jong ; Chen, Miin-Jang</creator><creatorcontrib>Ling, Chen-Hsiang ; Mo, Chi-Lin ; Chuang, Chun-Ho ; Shyue, Jing-Jong ; Chen, Miin-Jang</creatorcontrib><description>In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the
in situ
plasma treatment introduced into atomic layer deposition, was used to modulate the film quality of the AlN switching layer with a thickness of only 3.3 nm. The ALA treatment is capable of tailoring nitrogen vacancies in the AlN layer with monolayer accuracy, leading to a decrease in the operating voltage and an improvement in uniformity of the resistive switching characteristics. In addition, the AlN RRAM devices exhibit pulse endurance over 10
4
cycles and retention of more than 10
6
s at 125 °C. The result demonstrates that the resistive switching properties of RRAMs can be controlled by the precise atomic layer engineering of each monolayer.
This study demonstrates the precise tailoring of material properties of nanoscale thin films and electrical properties of AlN RRAM devices by atomic layer annealing.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc00542a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum nitride ; Atomic layer epitaxy ; Energy transfer ; Memory devices ; Monolayers ; Random access memory ; Switching ; Thickness</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-08, Vol.11 (33), p.11195-1123</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-1c4cb580b6a865d453d25f8be033382991de704f72ca06a4166f200f9f5845b03</citedby><cites>FETCH-LOGICAL-c281t-1c4cb580b6a865d453d25f8be033382991de704f72ca06a4166f200f9f5845b03</cites><orcidid>0000-0001-7124-5476 ; 0000-0002-8508-659X ; 0000-0002-9408-8327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ling, Chen-Hsiang</creatorcontrib><creatorcontrib>Mo, Chi-Lin</creatorcontrib><creatorcontrib>Chuang, Chun-Ho</creatorcontrib><creatorcontrib>Shyue, Jing-Jong</creatorcontrib><creatorcontrib>Chen, Miin-Jang</creatorcontrib><title>Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the
in situ
plasma treatment introduced into atomic layer deposition, was used to modulate the film quality of the AlN switching layer with a thickness of only 3.3 nm. The ALA treatment is capable of tailoring nitrogen vacancies in the AlN layer with monolayer accuracy, leading to a decrease in the operating voltage and an improvement in uniformity of the resistive switching characteristics. In addition, the AlN RRAM devices exhibit pulse endurance over 10
4
cycles and retention of more than 10
6
s at 125 °C. The result demonstrates that the resistive switching properties of RRAMs can be controlled by the precise atomic layer engineering of each monolayer.
This study demonstrates the precise tailoring of material properties of nanoscale thin films and electrical properties of AlN RRAM devices by atomic layer annealing.</description><subject>Aluminum nitride</subject><subject>Atomic layer epitaxy</subject><subject>Energy transfer</subject><subject>Memory devices</subject><subject>Monolayers</subject><subject>Random access memory</subject><subject>Switching</subject><subject>Thickness</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEQgIMoWGov3oWAN2F18tzscalPKHqp5yWbTWpKN1uTbaX_3q2V6sAwDz5m4EPoksAtAVbcNaw3AIJTfYJGFARkuWD89NhTeY4mKS1hCEWkksUIubLvWm_wSu9sxDYsfLA2-rDAXcDRJp96v7U4ffnefOzXPuC0qTOOQ4vL1es_JurQdC3WxtiUcGvbLu5wY7d-mC_QmdOrZCe_dYzeHx_m0-ds9vb0Mi1nmaGK9Bkx3NRCQS21kqLhgjVUOFVbYIwpWhSksTlwl1OjQWpOpHQUwBVOKC5qYGN0fbi7jt3nxqa-WnabGIaXFVVCDgn5nro5UCZ2KUXrqnX0rY67ikC1V1nds_n0R2U5wFcHOCZz5P5Us28QJW-e</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Ling, Chen-Hsiang</creator><creator>Mo, Chi-Lin</creator><creator>Chuang, Chun-Ho</creator><creator>Shyue, Jing-Jong</creator><creator>Chen, Miin-Jang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7124-5476</orcidid><orcidid>https://orcid.org/0000-0002-8508-659X</orcidid><orcidid>https://orcid.org/0000-0002-9408-8327</orcidid></search><sort><creationdate>20230824</creationdate><title>Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices</title><author>Ling, Chen-Hsiang ; Mo, Chi-Lin ; Chuang, Chun-Ho ; Shyue, Jing-Jong ; Chen, Miin-Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-1c4cb580b6a865d453d25f8be033382991de704f72ca06a4166f200f9f5845b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum nitride</topic><topic>Atomic layer epitaxy</topic><topic>Energy transfer</topic><topic>Memory devices</topic><topic>Monolayers</topic><topic>Random access memory</topic><topic>Switching</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Chen-Hsiang</creatorcontrib><creatorcontrib>Mo, Chi-Lin</creatorcontrib><creatorcontrib>Chuang, Chun-Ho</creatorcontrib><creatorcontrib>Shyue, Jing-Jong</creatorcontrib><creatorcontrib>Chen, Miin-Jang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Chen-Hsiang</au><au>Mo, Chi-Lin</au><au>Chuang, Chun-Ho</au><au>Shyue, Jing-Jong</au><au>Chen, Miin-Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-08-24</date><risdate>2023</risdate><volume>11</volume><issue>33</issue><spage>11195</spage><epage>1123</epage><pages>11195-1123</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>In this article, aluminum nitride (AlN) resistive random access memory (RRAM) devices are fabricated and investigated. To improve the resistive switching performance, the atomic layer annealing (ALA) technique, which is an energy transfer process by the
in situ
plasma treatment introduced into atomic layer deposition, was used to modulate the film quality of the AlN switching layer with a thickness of only 3.3 nm. The ALA treatment is capable of tailoring nitrogen vacancies in the AlN layer with monolayer accuracy, leading to a decrease in the operating voltage and an improvement in uniformity of the resistive switching characteristics. In addition, the AlN RRAM devices exhibit pulse endurance over 10
4
cycles and retention of more than 10
6
s at 125 °C. The result demonstrates that the resistive switching properties of RRAMs can be controlled by the precise atomic layer engineering of each monolayer.
This study demonstrates the precise tailoring of material properties of nanoscale thin films and electrical properties of AlN RRAM devices by atomic layer annealing.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tc00542a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7124-5476</orcidid><orcidid>https://orcid.org/0000-0002-8508-659X</orcidid><orcidid>https://orcid.org/0000-0002-9408-8327</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-08, Vol.11 (33), p.11195-1123 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2856285070 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aluminum nitride Atomic layer epitaxy Energy transfer Memory devices Monolayers Random access memory Switching Thickness |
title | Atomic layer engineering on resistive switching in sub-4 nm AlN resistive random access memory devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20layer%20engineering%20on%20resistive%20switching%20in%20sub-4%20nm%20AlN%20resistive%20random%20access%20memory%20devices&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Ling,%20Chen-Hsiang&rft.date=2023-08-24&rft.volume=11&rft.issue=33&rft.spage=11195&rft.epage=1123&rft.pages=11195-1123&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc00542a&rft_dat=%3Cproquest_rsc_p%3E2856285070%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856285070&rft_id=info:pmid/&rfr_iscdi=true |