Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model

In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear science and technology 2023-09, Vol.60 (9), p.1154-1167
Hauptverfasser: Haruhara, Masanobu, Muta, Hitoshi, Ohtori, Yasuki, Yamagishi, Shohei, Terayama, Shota
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1167
container_issue 9
container_start_page 1154
container_title Journal of nuclear science and technology
container_volume 60
creator Haruhara, Masanobu
Muta, Hitoshi
Ohtori, Yasuki
Yamagishi, Shohei
Terayama, Shota
description In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies have been conducted to develop the method to build a system reliability model of RPS to be combined with probabilistic risk assessment (PRA) so far. However, these studies have not been sufficiently progressed in terms of the quantitative evaluation and coupling with the conventional PRA method. Despite of the efforts of Task group of Digital system reliability failure mode taxonomy (DIGREL, later becoming Working Group on Digital Instrumentation and Control [WGDIC]) of Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) in this field, the situation has not changed sufficiently. From these backgrounds, this paper presents a rational quantitative evaluation method of the dynamic system reliability model of the digital RPS which can represent time-dependency and is consistent with the conventional PRA method.
doi_str_mv 10.1080/00223131.2023.2169379
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2856157508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856157508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-94a00d9d8855f732e41d67244834b36a48b5c2169407170363296bf8c41907923</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwE5AscU7xK45zA1W8pCIqHmfLiZ3iksSt7QD59yS0XDmtVvvNrGYAOMdohpFAlwgRQjHFM4IInRHMc5rlB2CChcAJJkwcgsnIJCN0DE5CWA8rZ1xMwPfSu40LqoaugttOtdFWtlTRuhY2Jr47PR5036rGljD0IZoGelNbVdjaxh42TptfsbYrGwef5-UL7IJtV_BR-Q_3CUNU0STRqzbYne8oOQVHlaqDOdvPKXi7vXmd3yeLp7uH-fUiKalIY5IzhZDOtRBpWmWUGIY1zwhjgrKCcsVEkZZjZIYynCHKKcl5UYmS4RxlOaFTcLHz3Xi37UyIcu063w4vJREpx2mWIjFQ6Y4qvQvBm0puvG2U7yVGcixZ_pUsx5LlvuRBd7XT2bZyvlFfztdaRtXXzldD4tIGSf-3-AFxeYMh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856157508</pqid></control><display><type>article</type><title>Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model</title><source>Alma/SFX Local Collection</source><creator>Haruhara, Masanobu ; Muta, Hitoshi ; Ohtori, Yasuki ; Yamagishi, Shohei ; Terayama, Shota</creator><creatorcontrib>Haruhara, Masanobu ; Muta, Hitoshi ; Ohtori, Yasuki ; Yamagishi, Shohei ; Terayama, Shota</creatorcontrib><description>In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies have been conducted to develop the method to build a system reliability model of RPS to be combined with probabilistic risk assessment (PRA) so far. However, these studies have not been sufficiently progressed in terms of the quantitative evaluation and coupling with the conventional PRA method. Despite of the efforts of Task group of Digital system reliability failure mode taxonomy (DIGREL, later becoming Working Group on Digital Instrumentation and Control [WGDIC]) of Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) in this field, the situation has not changed sufficiently. From these backgrounds, this paper presents a rational quantitative evaluation method of the dynamic system reliability model of the digital RPS which can represent time-dependency and is consistent with the conventional PRA method.</description><identifier>ISSN: 0022-3131</identifier><identifier>EISSN: 1881-1248</identifier><identifier>DOI: 10.1080/00223131.2023.2169379</identifier><language>eng</language><publisher>Tokyo: Taylor &amp; Francis</publisher><subject>analytical solution ; ATWS ; Boiling water reactors ; Circuit protection ; Common cause hardware faults ; Control equipment ; Cooling systems ; detected fault ; Digital electronics ; digital RPS ; Dynamic PRA ; Dynamical systems ; Failure modes ; Markov state-transition model ; Nuclear power plants ; Nuclear reactor components ; Nuclear reactors ; Nuclear safety ; Pressurized water reactors ; Probabilistic risk assessment ; Quantitative analysis ; Reliability analysis ; software fault ; System reliability ; Taxonomy ; undetected fault</subject><ispartof>Journal of nuclear science and technology, 2023-09, Vol.60 (9), p.1154-1167</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-94a00d9d8855f732e41d67244834b36a48b5c2169407170363296bf8c41907923</citedby><cites>FETCH-LOGICAL-c385t-94a00d9d8855f732e41d67244834b36a48b5c2169407170363296bf8c41907923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Haruhara, Masanobu</creatorcontrib><creatorcontrib>Muta, Hitoshi</creatorcontrib><creatorcontrib>Ohtori, Yasuki</creatorcontrib><creatorcontrib>Yamagishi, Shohei</creatorcontrib><creatorcontrib>Terayama, Shota</creatorcontrib><title>Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model</title><title>Journal of nuclear science and technology</title><description>In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies have been conducted to develop the method to build a system reliability model of RPS to be combined with probabilistic risk assessment (PRA) so far. However, these studies have not been sufficiently progressed in terms of the quantitative evaluation and coupling with the conventional PRA method. Despite of the efforts of Task group of Digital system reliability failure mode taxonomy (DIGREL, later becoming Working Group on Digital Instrumentation and Control [WGDIC]) of Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) in this field, the situation has not changed sufficiently. From these backgrounds, this paper presents a rational quantitative evaluation method of the dynamic system reliability model of the digital RPS which can represent time-dependency and is consistent with the conventional PRA method.</description><subject>analytical solution</subject><subject>ATWS</subject><subject>Boiling water reactors</subject><subject>Circuit protection</subject><subject>Common cause hardware faults</subject><subject>Control equipment</subject><subject>Cooling systems</subject><subject>detected fault</subject><subject>Digital electronics</subject><subject>digital RPS</subject><subject>Dynamic PRA</subject><subject>Dynamical systems</subject><subject>Failure modes</subject><subject>Markov state-transition model</subject><subject>Nuclear power plants</subject><subject>Nuclear reactor components</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Pressurized water reactors</subject><subject>Probabilistic risk assessment</subject><subject>Quantitative analysis</subject><subject>Reliability analysis</subject><subject>software fault</subject><subject>System reliability</subject><subject>Taxonomy</subject><subject>undetected fault</subject><issn>0022-3131</issn><issn>1881-1248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwE5AscU7xK45zA1W8pCIqHmfLiZ3iksSt7QD59yS0XDmtVvvNrGYAOMdohpFAlwgRQjHFM4IInRHMc5rlB2CChcAJJkwcgsnIJCN0DE5CWA8rZ1xMwPfSu40LqoaugttOtdFWtlTRuhY2Jr47PR5036rGljD0IZoGelNbVdjaxh42TptfsbYrGwef5-UL7IJtV_BR-Q_3CUNU0STRqzbYne8oOQVHlaqDOdvPKXi7vXmd3yeLp7uH-fUiKalIY5IzhZDOtRBpWmWUGIY1zwhjgrKCcsVEkZZjZIYynCHKKcl5UYmS4RxlOaFTcLHz3Xi37UyIcu063w4vJREpx2mWIjFQ6Y4qvQvBm0puvG2U7yVGcixZ_pUsx5LlvuRBd7XT2bZyvlFfztdaRtXXzldD4tIGSf-3-AFxeYMh</recordid><startdate>20230902</startdate><enddate>20230902</enddate><creator>Haruhara, Masanobu</creator><creator>Muta, Hitoshi</creator><creator>Ohtori, Yasuki</creator><creator>Yamagishi, Shohei</creator><creator>Terayama, Shota</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230902</creationdate><title>Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model</title><author>Haruhara, Masanobu ; Muta, Hitoshi ; Ohtori, Yasuki ; Yamagishi, Shohei ; Terayama, Shota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-94a00d9d8855f732e41d67244834b36a48b5c2169407170363296bf8c41907923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>analytical solution</topic><topic>ATWS</topic><topic>Boiling water reactors</topic><topic>Circuit protection</topic><topic>Common cause hardware faults</topic><topic>Control equipment</topic><topic>Cooling systems</topic><topic>detected fault</topic><topic>Digital electronics</topic><topic>digital RPS</topic><topic>Dynamic PRA</topic><topic>Dynamical systems</topic><topic>Failure modes</topic><topic>Markov state-transition model</topic><topic>Nuclear power plants</topic><topic>Nuclear reactor components</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Pressurized water reactors</topic><topic>Probabilistic risk assessment</topic><topic>Quantitative analysis</topic><topic>Reliability analysis</topic><topic>software fault</topic><topic>System reliability</topic><topic>Taxonomy</topic><topic>undetected fault</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haruhara, Masanobu</creatorcontrib><creatorcontrib>Muta, Hitoshi</creatorcontrib><creatorcontrib>Ohtori, Yasuki</creatorcontrib><creatorcontrib>Yamagishi, Shohei</creatorcontrib><creatorcontrib>Terayama, Shota</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><jtitle>Journal of nuclear science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haruhara, Masanobu</au><au>Muta, Hitoshi</au><au>Ohtori, Yasuki</au><au>Yamagishi, Shohei</au><au>Terayama, Shota</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model</atitle><jtitle>Journal of nuclear science and technology</jtitle><date>2023-09-02</date><risdate>2023</risdate><volume>60</volume><issue>9</issue><spage>1154</spage><epage>1167</epage><pages>1154-1167</pages><issn>0022-3131</issn><eissn>1881-1248</eissn><abstract>In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies have been conducted to develop the method to build a system reliability model of RPS to be combined with probabilistic risk assessment (PRA) so far. However, these studies have not been sufficiently progressed in terms of the quantitative evaluation and coupling with the conventional PRA method. Despite of the efforts of Task group of Digital system reliability failure mode taxonomy (DIGREL, later becoming Working Group on Digital Instrumentation and Control [WGDIC]) of Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) in this field, the situation has not changed sufficiently. From these backgrounds, this paper presents a rational quantitative evaluation method of the dynamic system reliability model of the digital RPS which can represent time-dependency and is consistent with the conventional PRA method.</abstract><cop>Tokyo</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00223131.2023.2169379</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3131
ispartof Journal of nuclear science and technology, 2023-09, Vol.60 (9), p.1154-1167
issn 0022-3131
1881-1248
language eng
recordid cdi_proquest_journals_2856157508
source Alma/SFX Local Collection
subjects analytical solution
ATWS
Boiling water reactors
Circuit protection
Common cause hardware faults
Control equipment
Cooling systems
detected fault
Digital electronics
digital RPS
Dynamic PRA
Dynamical systems
Failure modes
Markov state-transition model
Nuclear power plants
Nuclear reactor components
Nuclear reactors
Nuclear safety
Pressurized water reactors
Probabilistic risk assessment
Quantitative analysis
Reliability analysis
software fault
System reliability
Taxonomy
undetected fault
title Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proposal%20of%20quantification%20method%20of%20dynamic%20system%20reliability%20model%20of%20digital%20RPS%20using%20Markov%20state-transition%20model&rft.jtitle=Journal%20of%20nuclear%20science%20and%20technology&rft.au=Haruhara,%20Masanobu&rft.date=2023-09-02&rft.volume=60&rft.issue=9&rft.spage=1154&rft.epage=1167&rft.pages=1154-1167&rft.issn=0022-3131&rft.eissn=1881-1248&rft_id=info:doi/10.1080/00223131.2023.2169379&rft_dat=%3Cproquest_infor%3E2856157508%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856157508&rft_id=info:pmid/&rfr_iscdi=true