Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model
In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies ha...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear science and technology 2023-09, Vol.60 (9), p.1154-1167 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1167 |
---|---|
container_issue | 9 |
container_start_page | 1154 |
container_title | Journal of nuclear science and technology |
container_volume | 60 |
creator | Haruhara, Masanobu Muta, Hitoshi Ohtori, Yasuki Yamagishi, Shohei Terayama, Shota |
description | In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies have been conducted to develop the method to build a system reliability model of RPS to be combined with probabilistic risk assessment (PRA) so far. However, these studies have not been sufficiently progressed in terms of the quantitative evaluation and coupling with the conventional PRA method. Despite of the efforts of Task group of Digital system reliability failure mode taxonomy (DIGREL, later becoming Working Group on Digital Instrumentation and Control [WGDIC]) of Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) in this field, the situation has not changed sufficiently. From these backgrounds, this paper presents a rational quantitative evaluation method of the dynamic system reliability model of the digital RPS which can represent time-dependency and is consistent with the conventional PRA method. |
doi_str_mv | 10.1080/00223131.2023.2169379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2856157508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856157508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-94a00d9d8855f732e41d67244834b36a48b5c2169407170363296bf8c41907923</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwE5AscU7xK45zA1W8pCIqHmfLiZ3iksSt7QD59yS0XDmtVvvNrGYAOMdohpFAlwgRQjHFM4IInRHMc5rlB2CChcAJJkwcgsnIJCN0DE5CWA8rZ1xMwPfSu40LqoaugttOtdFWtlTRuhY2Jr47PR5036rGljD0IZoGelNbVdjaxh42TptfsbYrGwef5-UL7IJtV_BR-Q_3CUNU0STRqzbYne8oOQVHlaqDOdvPKXi7vXmd3yeLp7uH-fUiKalIY5IzhZDOtRBpWmWUGIY1zwhjgrKCcsVEkZZjZIYynCHKKcl5UYmS4RxlOaFTcLHz3Xi37UyIcu063w4vJREpx2mWIjFQ6Y4qvQvBm0puvG2U7yVGcixZ_pUsx5LlvuRBd7XT2bZyvlFfztdaRtXXzldD4tIGSf-3-AFxeYMh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856157508</pqid></control><display><type>article</type><title>Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model</title><source>Alma/SFX Local Collection</source><creator>Haruhara, Masanobu ; Muta, Hitoshi ; Ohtori, Yasuki ; Yamagishi, Shohei ; Terayama, Shota</creator><creatorcontrib>Haruhara, Masanobu ; Muta, Hitoshi ; Ohtori, Yasuki ; Yamagishi, Shohei ; Terayama, Shota</creatorcontrib><description>In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies have been conducted to develop the method to build a system reliability model of RPS to be combined with probabilistic risk assessment (PRA) so far. However, these studies have not been sufficiently progressed in terms of the quantitative evaluation and coupling with the conventional PRA method. Despite of the efforts of Task group of Digital system reliability failure mode taxonomy (DIGREL, later becoming Working Group on Digital Instrumentation and Control [WGDIC]) of Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) in this field, the situation has not changed sufficiently. From these backgrounds, this paper presents a rational quantitative evaluation method of the dynamic system reliability model of the digital RPS which can represent time-dependency and is consistent with the conventional PRA method.</description><identifier>ISSN: 0022-3131</identifier><identifier>EISSN: 1881-1248</identifier><identifier>DOI: 10.1080/00223131.2023.2169379</identifier><language>eng</language><publisher>Tokyo: Taylor & Francis</publisher><subject>analytical solution ; ATWS ; Boiling water reactors ; Circuit protection ; Common cause hardware faults ; Control equipment ; Cooling systems ; detected fault ; Digital electronics ; digital RPS ; Dynamic PRA ; Dynamical systems ; Failure modes ; Markov state-transition model ; Nuclear power plants ; Nuclear reactor components ; Nuclear reactors ; Nuclear safety ; Pressurized water reactors ; Probabilistic risk assessment ; Quantitative analysis ; Reliability analysis ; software fault ; System reliability ; Taxonomy ; undetected fault</subject><ispartof>Journal of nuclear science and technology, 2023-09, Vol.60 (9), p.1154-1167</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-94a00d9d8855f732e41d67244834b36a48b5c2169407170363296bf8c41907923</citedby><cites>FETCH-LOGICAL-c385t-94a00d9d8855f732e41d67244834b36a48b5c2169407170363296bf8c41907923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Haruhara, Masanobu</creatorcontrib><creatorcontrib>Muta, Hitoshi</creatorcontrib><creatorcontrib>Ohtori, Yasuki</creatorcontrib><creatorcontrib>Yamagishi, Shohei</creatorcontrib><creatorcontrib>Terayama, Shota</creatorcontrib><title>Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model</title><title>Journal of nuclear science and technology</title><description>In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies have been conducted to develop the method to build a system reliability model of RPS to be combined with probabilistic risk assessment (PRA) so far. However, these studies have not been sufficiently progressed in terms of the quantitative evaluation and coupling with the conventional PRA method. Despite of the efforts of Task group of Digital system reliability failure mode taxonomy (DIGREL, later becoming Working Group on Digital Instrumentation and Control [WGDIC]) of Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) in this field, the situation has not changed sufficiently. From these backgrounds, this paper presents a rational quantitative evaluation method of the dynamic system reliability model of the digital RPS which can represent time-dependency and is consistent with the conventional PRA method.</description><subject>analytical solution</subject><subject>ATWS</subject><subject>Boiling water reactors</subject><subject>Circuit protection</subject><subject>Common cause hardware faults</subject><subject>Control equipment</subject><subject>Cooling systems</subject><subject>detected fault</subject><subject>Digital electronics</subject><subject>digital RPS</subject><subject>Dynamic PRA</subject><subject>Dynamical systems</subject><subject>Failure modes</subject><subject>Markov state-transition model</subject><subject>Nuclear power plants</subject><subject>Nuclear reactor components</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Pressurized water reactors</subject><subject>Probabilistic risk assessment</subject><subject>Quantitative analysis</subject><subject>Reliability analysis</subject><subject>software fault</subject><subject>System reliability</subject><subject>Taxonomy</subject><subject>undetected fault</subject><issn>0022-3131</issn><issn>1881-1248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwE5AscU7xK45zA1W8pCIqHmfLiZ3iksSt7QD59yS0XDmtVvvNrGYAOMdohpFAlwgRQjHFM4IInRHMc5rlB2CChcAJJkwcgsnIJCN0DE5CWA8rZ1xMwPfSu40LqoaugttOtdFWtlTRuhY2Jr47PR5036rGljD0IZoGelNbVdjaxh42TptfsbYrGwef5-UL7IJtV_BR-Q_3CUNU0STRqzbYne8oOQVHlaqDOdvPKXi7vXmd3yeLp7uH-fUiKalIY5IzhZDOtRBpWmWUGIY1zwhjgrKCcsVEkZZjZIYynCHKKcl5UYmS4RxlOaFTcLHz3Xi37UyIcu063w4vJREpx2mWIjFQ6Y4qvQvBm0puvG2U7yVGcixZ_pUsx5LlvuRBd7XT2bZyvlFfztdaRtXXzldD4tIGSf-3-AFxeYMh</recordid><startdate>20230902</startdate><enddate>20230902</enddate><creator>Haruhara, Masanobu</creator><creator>Muta, Hitoshi</creator><creator>Ohtori, Yasuki</creator><creator>Yamagishi, Shohei</creator><creator>Terayama, Shota</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230902</creationdate><title>Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model</title><author>Haruhara, Masanobu ; Muta, Hitoshi ; Ohtori, Yasuki ; Yamagishi, Shohei ; Terayama, Shota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-94a00d9d8855f732e41d67244834b36a48b5c2169407170363296bf8c41907923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>analytical solution</topic><topic>ATWS</topic><topic>Boiling water reactors</topic><topic>Circuit protection</topic><topic>Common cause hardware faults</topic><topic>Control equipment</topic><topic>Cooling systems</topic><topic>detected fault</topic><topic>Digital electronics</topic><topic>digital RPS</topic><topic>Dynamic PRA</topic><topic>Dynamical systems</topic><topic>Failure modes</topic><topic>Markov state-transition model</topic><topic>Nuclear power plants</topic><topic>Nuclear reactor components</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Pressurized water reactors</topic><topic>Probabilistic risk assessment</topic><topic>Quantitative analysis</topic><topic>Reliability analysis</topic><topic>software fault</topic><topic>System reliability</topic><topic>Taxonomy</topic><topic>undetected fault</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haruhara, Masanobu</creatorcontrib><creatorcontrib>Muta, Hitoshi</creatorcontrib><creatorcontrib>Ohtori, Yasuki</creatorcontrib><creatorcontrib>Yamagishi, Shohei</creatorcontrib><creatorcontrib>Terayama, Shota</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><jtitle>Journal of nuclear science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haruhara, Masanobu</au><au>Muta, Hitoshi</au><au>Ohtori, Yasuki</au><au>Yamagishi, Shohei</au><au>Terayama, Shota</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model</atitle><jtitle>Journal of nuclear science and technology</jtitle><date>2023-09-02</date><risdate>2023</risdate><volume>60</volume><issue>9</issue><spage>1154</spage><epage>1167</epage><pages>1154-1167</pages><issn>0022-3131</issn><eissn>1881-1248</eissn><abstract>In safety systems of the latest nuclear power plants such as the Advanced Boiling Water Reactor (ABWR) and the latest Pressurized Water Reactor (PWR), digital circuits are used for start-up signals of a reactor protection system (RPS) and emergency core cooling systems (ECCS). And several studies have been conducted to develop the method to build a system reliability model of RPS to be combined with probabilistic risk assessment (PRA) so far. However, these studies have not been sufficiently progressed in terms of the quantitative evaluation and coupling with the conventional PRA method. Despite of the efforts of Task group of Digital system reliability failure mode taxonomy (DIGREL, later becoming Working Group on Digital Instrumentation and Control [WGDIC]) of Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) in this field, the situation has not changed sufficiently. From these backgrounds, this paper presents a rational quantitative evaluation method of the dynamic system reliability model of the digital RPS which can represent time-dependency and is consistent with the conventional PRA method.</abstract><cop>Tokyo</cop><pub>Taylor & Francis</pub><doi>10.1080/00223131.2023.2169379</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3131 |
ispartof | Journal of nuclear science and technology, 2023-09, Vol.60 (9), p.1154-1167 |
issn | 0022-3131 1881-1248 |
language | eng |
recordid | cdi_proquest_journals_2856157508 |
source | Alma/SFX Local Collection |
subjects | analytical solution ATWS Boiling water reactors Circuit protection Common cause hardware faults Control equipment Cooling systems detected fault Digital electronics digital RPS Dynamic PRA Dynamical systems Failure modes Markov state-transition model Nuclear power plants Nuclear reactor components Nuclear reactors Nuclear safety Pressurized water reactors Probabilistic risk assessment Quantitative analysis Reliability analysis software fault System reliability Taxonomy undetected fault |
title | Proposal of quantification method of dynamic system reliability model of digital RPS using Markov state-transition model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proposal%20of%20quantification%20method%20of%20dynamic%20system%20reliability%20model%20of%20digital%20RPS%20using%20Markov%20state-transition%20model&rft.jtitle=Journal%20of%20nuclear%20science%20and%20technology&rft.au=Haruhara,%20Masanobu&rft.date=2023-09-02&rft.volume=60&rft.issue=9&rft.spage=1154&rft.epage=1167&rft.pages=1154-1167&rft.issn=0022-3131&rft.eissn=1881-1248&rft_id=info:doi/10.1080/00223131.2023.2169379&rft_dat=%3Cproquest_infor%3E2856157508%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856157508&rft_id=info:pmid/&rfr_iscdi=true |