The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles
Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Daciberg Lima Gonçalves Laass, Vinicius Casteluber Weslem Liberato Silva |
description | Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to N\) over \(B\) which represents \(\delta\) there exists a point \(x \in M\) such that \(f(\tau(x)) = f(x)\). In the cases that \(B\) is a \(K(\pi ,1)\)-space and the fibers of the projections \(M \to B\) and \(N \to B\) are \(K(\pi,1)\) closed surfaces \(S_M\) and \(S_N\), respectively, we show that the problem of decide if a homotopy class of a fiber-preserving map \(f\colon M \to N\) over \(B\) has the Borsuk-Ulam property is equivalent of an algebraic problem involving the fundamental groups of \(M\), the orbit space of \(M\) by \(\tau\) and a type of generalized braid groups of \(N\) that we call parametrized braid groups. As an application, we determine the homotopy classes of self fiber-preserving maps of some 2-torus bundles over \(\mathbb{S}^1\) that satisfy the Borsuk-Ulam property with respect to certain involutions \(\tau\) over \(\mathbb{S}^1\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2855747089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2855747089</sourcerecordid><originalsourceid>FETCH-proquest_journals_28557470893</originalsourceid><addsrcrecordid>eNqNzkHKwjAQBeAgCIp6hwG3Fvqn1tatongA_7WMbarVNBNnkoWe3iIewNVbvMfHG6ixzrK_pFxqPVIzkVuapnpV6DzPxup1vBrYEEu8J_8WO_BM3nB4QkMMV-ookH9CZVHECJCDc3S1NbIAj4ydCdy-TA1nxrYWuDBFL4CuBvTethWGlpx8MIncYNUjX2Gqhg1aMbNvTtR8vztuD0l_4RGNhNONIru-Oukyz4tlkZbr7LfVG6_NT7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2855747089</pqid></control><display><type>article</type><title>The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles</title><source>Free E- Journals</source><creator>Daciberg Lima Gonçalves ; Laass, Vinicius Casteluber ; Weslem Liberato Silva</creator><creatorcontrib>Daciberg Lima Gonçalves ; Laass, Vinicius Casteluber ; Weslem Liberato Silva</creatorcontrib><description>Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to N\) over \(B\) which represents \(\delta\) there exists a point \(x \in M\) such that \(f(\tau(x)) = f(x)\). In the cases that \(B\) is a \(K(\pi ,1)\)-space and the fibers of the projections \(M \to B\) and \(N \to B\) are \(K(\pi,1)\) closed surfaces \(S_M\) and \(S_N\), respectively, we show that the problem of decide if a homotopy class of a fiber-preserving map \(f\colon M \to N\) over \(B\) has the Borsuk-Ulam property is equivalent of an algebraic problem involving the fundamental groups of \(M\), the orbit space of \(M\) by \(\tau\) and a type of generalized braid groups of \(N\) that we call parametrized braid groups. As an application, we determine the homotopy classes of self fiber-preserving maps of some 2-torus bundles over \(\mathbb{S}^1\) that satisfy the Borsuk-Ulam property with respect to certain involutions \(\tau\) over \(\mathbb{S}^1\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Braid theory ; Braiding ; Parameterization ; Toruses</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Daciberg Lima Gonçalves</creatorcontrib><creatorcontrib>Laass, Vinicius Casteluber</creatorcontrib><creatorcontrib>Weslem Liberato Silva</creatorcontrib><title>The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles</title><title>arXiv.org</title><description>Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to N\) over \(B\) which represents \(\delta\) there exists a point \(x \in M\) such that \(f(\tau(x)) = f(x)\). In the cases that \(B\) is a \(K(\pi ,1)\)-space and the fibers of the projections \(M \to B\) and \(N \to B\) are \(K(\pi,1)\) closed surfaces \(S_M\) and \(S_N\), respectively, we show that the problem of decide if a homotopy class of a fiber-preserving map \(f\colon M \to N\) over \(B\) has the Borsuk-Ulam property is equivalent of an algebraic problem involving the fundamental groups of \(M\), the orbit space of \(M\) by \(\tau\) and a type of generalized braid groups of \(N\) that we call parametrized braid groups. As an application, we determine the homotopy classes of self fiber-preserving maps of some 2-torus bundles over \(\mathbb{S}^1\) that satisfy the Borsuk-Ulam property with respect to certain involutions \(\tau\) over \(\mathbb{S}^1\).</description><subject>Braid theory</subject><subject>Braiding</subject><subject>Parameterization</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzkHKwjAQBeAgCIp6hwG3Fvqn1tatongA_7WMbarVNBNnkoWe3iIewNVbvMfHG6ixzrK_pFxqPVIzkVuapnpV6DzPxup1vBrYEEu8J_8WO_BM3nB4QkMMV-ookH9CZVHECJCDc3S1NbIAj4ydCdy-TA1nxrYWuDBFL4CuBvTethWGlpx8MIncYNUjX2Gqhg1aMbNvTtR8vztuD0l_4RGNhNONIru-Oukyz4tlkZbr7LfVG6_NT7Y</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Daciberg Lima Gonçalves</creator><creator>Laass, Vinicius Casteluber</creator><creator>Weslem Liberato Silva</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230822</creationdate><title>The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles</title><author>Daciberg Lima Gonçalves ; Laass, Vinicius Casteluber ; Weslem Liberato Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28557470893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Braid theory</topic><topic>Braiding</topic><topic>Parameterization</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Daciberg Lima Gonçalves</creatorcontrib><creatorcontrib>Laass, Vinicius Casteluber</creatorcontrib><creatorcontrib>Weslem Liberato Silva</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daciberg Lima Gonçalves</au><au>Laass, Vinicius Casteluber</au><au>Weslem Liberato Silva</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles</atitle><jtitle>arXiv.org</jtitle><date>2023-08-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to N\) over \(B\) which represents \(\delta\) there exists a point \(x \in M\) such that \(f(\tau(x)) = f(x)\). In the cases that \(B\) is a \(K(\pi ,1)\)-space and the fibers of the projections \(M \to B\) and \(N \to B\) are \(K(\pi,1)\) closed surfaces \(S_M\) and \(S_N\), respectively, we show that the problem of decide if a homotopy class of a fiber-preserving map \(f\colon M \to N\) over \(B\) has the Borsuk-Ulam property is equivalent of an algebraic problem involving the fundamental groups of \(M\), the orbit space of \(M\) by \(\tau\) and a type of generalized braid groups of \(N\) that we call parametrized braid groups. As an application, we determine the homotopy classes of self fiber-preserving maps of some 2-torus bundles over \(\mathbb{S}^1\) that satisfy the Borsuk-Ulam property with respect to certain involutions \(\tau\) over \(\mathbb{S}^1\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2855747089 |
source | Free E- Journals |
subjects | Braid theory Braiding Parameterization Toruses |
title | The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Borsuk-Ulam%20property%20for%20homotopy%20classes%20on%20bundles,%20parametrized%20braids%20groups%20and%20applications%20for%20surfaces%20bundles&rft.jtitle=arXiv.org&rft.au=Daciberg%20Lima%20Gon%C3%A7alves&rft.date=2023-08-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2855747089%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2855747089&rft_id=info:pmid/&rfr_iscdi=true |