The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles

Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Daciberg Lima Gonçalves, Laass, Vinicius Casteluber, Weslem Liberato Silva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Daciberg Lima Gonçalves
Laass, Vinicius Casteluber
Weslem Liberato Silva
description Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to N\) over \(B\) which represents \(\delta\) there exists a point \(x \in M\) such that \(f(\tau(x)) = f(x)\). In the cases that \(B\) is a \(K(\pi ,1)\)-space and the fibers of the projections \(M \to B\) and \(N \to B\) are \(K(\pi,1)\) closed surfaces \(S_M\) and \(S_N\), respectively, we show that the problem of decide if a homotopy class of a fiber-preserving map \(f\colon M \to N\) over \(B\) has the Borsuk-Ulam property is equivalent of an algebraic problem involving the fundamental groups of \(M\), the orbit space of \(M\) by \(\tau\) and a type of generalized braid groups of \(N\) that we call parametrized braid groups. As an application, we determine the homotopy classes of self fiber-preserving maps of some 2-torus bundles over \(\mathbb{S}^1\) that satisfy the Borsuk-Ulam property with respect to certain involutions \(\tau\) over \(\mathbb{S}^1\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2855747089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2855747089</sourcerecordid><originalsourceid>FETCH-proquest_journals_28557470893</originalsourceid><addsrcrecordid>eNqNzkHKwjAQBeAgCIp6hwG3Fvqn1tatongA_7WMbarVNBNnkoWe3iIewNVbvMfHG6ixzrK_pFxqPVIzkVuapnpV6DzPxup1vBrYEEu8J_8WO_BM3nB4QkMMV-ookH9CZVHECJCDc3S1NbIAj4ydCdy-TA1nxrYWuDBFL4CuBvTethWGlpx8MIncYNUjX2Gqhg1aMbNvTtR8vztuD0l_4RGNhNONIru-Oukyz4tlkZbr7LfVG6_NT7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2855747089</pqid></control><display><type>article</type><title>The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles</title><source>Free E- Journals</source><creator>Daciberg Lima Gonçalves ; Laass, Vinicius Casteluber ; Weslem Liberato Silva</creator><creatorcontrib>Daciberg Lima Gonçalves ; Laass, Vinicius Casteluber ; Weslem Liberato Silva</creatorcontrib><description>Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to N\) over \(B\) which represents \(\delta\) there exists a point \(x \in M\) such that \(f(\tau(x)) = f(x)\). In the cases that \(B\) is a \(K(\pi ,1)\)-space and the fibers of the projections \(M \to B\) and \(N \to B\) are \(K(\pi,1)\) closed surfaces \(S_M\) and \(S_N\), respectively, we show that the problem of decide if a homotopy class of a fiber-preserving map \(f\colon M \to N\) over \(B\) has the Borsuk-Ulam property is equivalent of an algebraic problem involving the fundamental groups of \(M\), the orbit space of \(M\) by \(\tau\) and a type of generalized braid groups of \(N\) that we call parametrized braid groups. As an application, we determine the homotopy classes of self fiber-preserving maps of some 2-torus bundles over \(\mathbb{S}^1\) that satisfy the Borsuk-Ulam property with respect to certain involutions \(\tau\) over \(\mathbb{S}^1\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Braid theory ; Braiding ; Parameterization ; Toruses</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Daciberg Lima Gonçalves</creatorcontrib><creatorcontrib>Laass, Vinicius Casteluber</creatorcontrib><creatorcontrib>Weslem Liberato Silva</creatorcontrib><title>The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles</title><title>arXiv.org</title><description>Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to N\) over \(B\) which represents \(\delta\) there exists a point \(x \in M\) such that \(f(\tau(x)) = f(x)\). In the cases that \(B\) is a \(K(\pi ,1)\)-space and the fibers of the projections \(M \to B\) and \(N \to B\) are \(K(\pi,1)\) closed surfaces \(S_M\) and \(S_N\), respectively, we show that the problem of decide if a homotopy class of a fiber-preserving map \(f\colon M \to N\) over \(B\) has the Borsuk-Ulam property is equivalent of an algebraic problem involving the fundamental groups of \(M\), the orbit space of \(M\) by \(\tau\) and a type of generalized braid groups of \(N\) that we call parametrized braid groups. As an application, we determine the homotopy classes of self fiber-preserving maps of some 2-torus bundles over \(\mathbb{S}^1\) that satisfy the Borsuk-Ulam property with respect to certain involutions \(\tau\) over \(\mathbb{S}^1\).</description><subject>Braid theory</subject><subject>Braiding</subject><subject>Parameterization</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzkHKwjAQBeAgCIp6hwG3Fvqn1tatongA_7WMbarVNBNnkoWe3iIewNVbvMfHG6ixzrK_pFxqPVIzkVuapnpV6DzPxup1vBrYEEu8J_8WO_BM3nB4QkMMV-ookH9CZVHECJCDc3S1NbIAj4ydCdy-TA1nxrYWuDBFL4CuBvTethWGlpx8MIncYNUjX2Gqhg1aMbNvTtR8vztuD0l_4RGNhNONIru-Oukyz4tlkZbr7LfVG6_NT7Y</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Daciberg Lima Gonçalves</creator><creator>Laass, Vinicius Casteluber</creator><creator>Weslem Liberato Silva</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230822</creationdate><title>The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles</title><author>Daciberg Lima Gonçalves ; Laass, Vinicius Casteluber ; Weslem Liberato Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28557470893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Braid theory</topic><topic>Braiding</topic><topic>Parameterization</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Daciberg Lima Gonçalves</creatorcontrib><creatorcontrib>Laass, Vinicius Casteluber</creatorcontrib><creatorcontrib>Weslem Liberato Silva</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daciberg Lima Gonçalves</au><au>Laass, Vinicius Casteluber</au><au>Weslem Liberato Silva</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles</atitle><jtitle>arXiv.org</jtitle><date>2023-08-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(M\) and \(N\) be fiber bundles over the same base \(B\), where \(M\) is endowed with a free involution \(\tau\) over \(B\). A homotopy class \(\delta \in [M,N]_{B}\) (over \(B\)) is said to have the Borsuk-Ulam property with respect to \(\tau\) if for every fiber-preserving map \(f\colon M \to N\) over \(B\) which represents \(\delta\) there exists a point \(x \in M\) such that \(f(\tau(x)) = f(x)\). In the cases that \(B\) is a \(K(\pi ,1)\)-space and the fibers of the projections \(M \to B\) and \(N \to B\) are \(K(\pi,1)\) closed surfaces \(S_M\) and \(S_N\), respectively, we show that the problem of decide if a homotopy class of a fiber-preserving map \(f\colon M \to N\) over \(B\) has the Borsuk-Ulam property is equivalent of an algebraic problem involving the fundamental groups of \(M\), the orbit space of \(M\) by \(\tau\) and a type of generalized braid groups of \(N\) that we call parametrized braid groups. As an application, we determine the homotopy classes of self fiber-preserving maps of some 2-torus bundles over \(\mathbb{S}^1\) that satisfy the Borsuk-Ulam property with respect to certain involutions \(\tau\) over \(\mathbb{S}^1\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2855747089
source Free E- Journals
subjects Braid theory
Braiding
Parameterization
Toruses
title The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Borsuk-Ulam%20property%20for%20homotopy%20classes%20on%20bundles,%20parametrized%20braids%20groups%20and%20applications%20for%20surfaces%20bundles&rft.jtitle=arXiv.org&rft.au=Daciberg%20Lima%20Gon%C3%A7alves&rft.date=2023-08-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2855747089%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2855747089&rft_id=info:pmid/&rfr_iscdi=true