Federated Learning on Patient Data for Privacy-Protecting Polycystic Ovary Syndrome Treatment
The field of women's endocrinology has trailed behind data-driven medical solutions, largely due to concerns over the privacy of patient data. Valuable datapoints about hormone levels or menstrual cycling could expose patients who suffer from comorbidities or terminate a pregnancy, violating th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Morris, Lucia Qiu, Tori Raghuraman, Nikhil |
description | The field of women's endocrinology has trailed behind data-driven medical solutions, largely due to concerns over the privacy of patient data. Valuable datapoints about hormone levels or menstrual cycling could expose patients who suffer from comorbidities or terminate a pregnancy, violating their privacy. We explore the application of Federated Learning (FL) to predict the optimal drug for patients with polycystic ovary syndrome (PCOS). PCOS is a serious hormonal disorder impacting millions of women worldwide, yet it's poorly understood and its research is stunted by a lack of patient data. We demonstrate that a variety of FL approaches succeed on a synthetic PCOS patient dataset. Our proposed FL models are a tool to access massive quantities of diverse data and identify the most effective treatment option while providing PCOS patients with privacy guarantees. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2855746956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2855746956</sourcerecordid><originalsourceid>FETCH-proquest_journals_28557469563</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAIMgWNQ_LHgu1NTUelaLB8GCXkWWdpVKm-hmK-T3KvgAT3OYmYGKdJrO43yh9UhNvb8nSaKzpTYmjdS5oJoYhWrYE7Jt7A2chRKlISuwQUG4OoaSmxdWIS7ZCVXyzUrXhip4aSo4vJADHIOt2XUEJyaU7vNP1PCKrafpj2M1K7an9S5-sHv25OVydz3bj7ro3JjlIluZLP2vegMcVEQu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2855746956</pqid></control><display><type>article</type><title>Federated Learning on Patient Data for Privacy-Protecting Polycystic Ovary Syndrome Treatment</title><source>Free E- Journals</source><creator>Morris, Lucia ; Qiu, Tori ; Raghuraman, Nikhil</creator><creatorcontrib>Morris, Lucia ; Qiu, Tori ; Raghuraman, Nikhil</creatorcontrib><description>The field of women's endocrinology has trailed behind data-driven medical solutions, largely due to concerns over the privacy of patient data. Valuable datapoints about hormone levels or menstrual cycling could expose patients who suffer from comorbidities or terminate a pregnancy, violating their privacy. We explore the application of Federated Learning (FL) to predict the optimal drug for patients with polycystic ovary syndrome (PCOS). PCOS is a serious hormonal disorder impacting millions of women worldwide, yet it's poorly understood and its research is stunted by a lack of patient data. We demonstrate that a variety of FL approaches succeed on a synthetic PCOS patient dataset. Our proposed FL models are a tool to access massive quantities of diverse data and identify the most effective treatment option while providing PCOS patients with privacy guarantees.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Endocrinology ; Federated learning ; Health services ; Privacy</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Morris, Lucia</creatorcontrib><creatorcontrib>Qiu, Tori</creatorcontrib><creatorcontrib>Raghuraman, Nikhil</creatorcontrib><title>Federated Learning on Patient Data for Privacy-Protecting Polycystic Ovary Syndrome Treatment</title><title>arXiv.org</title><description>The field of women's endocrinology has trailed behind data-driven medical solutions, largely due to concerns over the privacy of patient data. Valuable datapoints about hormone levels or menstrual cycling could expose patients who suffer from comorbidities or terminate a pregnancy, violating their privacy. We explore the application of Federated Learning (FL) to predict the optimal drug for patients with polycystic ovary syndrome (PCOS). PCOS is a serious hormonal disorder impacting millions of women worldwide, yet it's poorly understood and its research is stunted by a lack of patient data. We demonstrate that a variety of FL approaches succeed on a synthetic PCOS patient dataset. Our proposed FL models are a tool to access massive quantities of diverse data and identify the most effective treatment option while providing PCOS patients with privacy guarantees.</description><subject>Endocrinology</subject><subject>Federated learning</subject><subject>Health services</subject><subject>Privacy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0EKwjAQAIMgWNQ_LHgu1NTUelaLB8GCXkWWdpVKm-hmK-T3KvgAT3OYmYGKdJrO43yh9UhNvb8nSaKzpTYmjdS5oJoYhWrYE7Jt7A2chRKlISuwQUG4OoaSmxdWIS7ZCVXyzUrXhip4aSo4vJADHIOt2XUEJyaU7vNP1PCKrafpj2M1K7an9S5-sHv25OVydz3bj7ro3JjlIluZLP2vegMcVEQu</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Morris, Lucia</creator><creator>Qiu, Tori</creator><creator>Raghuraman, Nikhil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230822</creationdate><title>Federated Learning on Patient Data for Privacy-Protecting Polycystic Ovary Syndrome Treatment</title><author>Morris, Lucia ; Qiu, Tori ; Raghuraman, Nikhil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28557469563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Endocrinology</topic><topic>Federated learning</topic><topic>Health services</topic><topic>Privacy</topic><toplevel>online_resources</toplevel><creatorcontrib>Morris, Lucia</creatorcontrib><creatorcontrib>Qiu, Tori</creatorcontrib><creatorcontrib>Raghuraman, Nikhil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Lucia</au><au>Qiu, Tori</au><au>Raghuraman, Nikhil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Federated Learning on Patient Data for Privacy-Protecting Polycystic Ovary Syndrome Treatment</atitle><jtitle>arXiv.org</jtitle><date>2023-08-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The field of women's endocrinology has trailed behind data-driven medical solutions, largely due to concerns over the privacy of patient data. Valuable datapoints about hormone levels or menstrual cycling could expose patients who suffer from comorbidities or terminate a pregnancy, violating their privacy. We explore the application of Federated Learning (FL) to predict the optimal drug for patients with polycystic ovary syndrome (PCOS). PCOS is a serious hormonal disorder impacting millions of women worldwide, yet it's poorly understood and its research is stunted by a lack of patient data. We demonstrate that a variety of FL approaches succeed on a synthetic PCOS patient dataset. Our proposed FL models are a tool to access massive quantities of diverse data and identify the most effective treatment option while providing PCOS patients with privacy guarantees.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2855746956 |
source | Free E- Journals |
subjects | Endocrinology Federated learning Health services Privacy |
title | Federated Learning on Patient Data for Privacy-Protecting Polycystic Ovary Syndrome Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Federated%20Learning%20on%20Patient%20Data%20for%20Privacy-Protecting%20Polycystic%20Ovary%20Syndrome%20Treatment&rft.jtitle=arXiv.org&rft.au=Morris,%20Lucia&rft.date=2023-08-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2855746956%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2855746956&rft_id=info:pmid/&rfr_iscdi=true |