AutoMap: Automatic Mapping of Neural Networks to Deep Learning Accelerators for Edge Devices

Emerging deep neural networks (DNNs) have been emerging in applications (object detection, automatic speech recognition, etc.) deployed on edge devices. To improve the energy efficiency of edge devices, domain-specific deep learning accelerators (DLAs) are designed with limited on-chip resources. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2023-09, Vol.42 (9), p.2994-3006
Hauptverfasser: Wang, Yanhong, Zhao, Zihao, Jin, Xu, Zheng, Haotian, Nie, Maohua, Zou, Qiaosha, Shi, C.-J. Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3006
container_issue 9
container_start_page 2994
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 42
creator Wang, Yanhong
Zhao, Zihao
Jin, Xu
Zheng, Haotian
Nie, Maohua
Zou, Qiaosha
Shi, C.-J. Richard
description Emerging deep neural networks (DNNs) have been emerging in applications (object detection, automatic speech recognition, etc.) deployed on edge devices. To improve the energy efficiency of edge devices, domain-specific deep learning accelerators (DLAs) are designed with limited on-chip resources. The manifold DLA designs and evolving DNN topologies bring challenges for applications mapping and scheduling on hardware resources. In this article, we propose an automatic DNN mapping framework named AutoMap, given the hardware backend information. First, a computational graph representation called extended directed weighted graph (EDWG) is proposed, which realizes unified expression for both spatial and temporal network interlayer connections. Second, an associated partitioner is implemented for splitting an EDWG into subEDWGs, which incorporates the on-chip memory constraint and facilitates weight data reuse on chip. Finally, a dynamic memory allocation strategy is utilized to alleviate the feature storing burden introduced by the multivarious network sizes and connections. Compared to the baseline mapping methods, experimental results show that our proposed automatic mapping framework can help to speedup the execution of several DNNs on state-of-the-art DLAs, ranging from 1.27\times to 3.45\times . The utilization of the PE array can increase from 20% to 64%.
doi_str_mv 10.1109/TCAD.2022.3232070
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2855276875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9999408</ieee_id><sourcerecordid>2855276875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-41443a421137b6f01ca1c3589f68f4e21a40d38bf702ebece4901b8726b322593</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfiV22EVteUgFNmWHZDnuuEpp62AnIP4eR62YzZ0ZnXnoInRNyYRSUt4tp9VswghjE844I5KcoBEtucwEzekpGhEmVUZS_xxdxLghhIqclSP0UfWdfzHtPR6Snekai1PZNvs19g6_Qh_MNkn348NnxJ3HM4AWL8CE_cBU1sIWgul8iNj5gOerNSTmu7EQL9GZM9sIV0cdo_eH-XL6lC3eHp-n1SKzTORdelEIbgSjlMu6cIRaQy3PVekK5QQwagRZcVU7SRjUYEGUhNZKsqLmjOUlH6Pbw942-K8eYqc3vg_7dFIzledMFkrmiaIHygYfYwCn29DsTPjVlOjBRD2YqAcT9dHENHNzmGkA4J8vUwii-B9sLGv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2855276875</pqid></control><display><type>article</type><title>AutoMap: Automatic Mapping of Neural Networks to Deep Learning Accelerators for Edge Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yanhong ; Zhao, Zihao ; Jin, Xu ; Zheng, Haotian ; Nie, Maohua ; Zou, Qiaosha ; Shi, C.-J. Richard</creator><creatorcontrib>Wang, Yanhong ; Zhao, Zihao ; Jin, Xu ; Zheng, Haotian ; Nie, Maohua ; Zou, Qiaosha ; Shi, C.-J. Richard</creatorcontrib><description><![CDATA[Emerging deep neural networks (DNNs) have been emerging in applications (object detection, automatic speech recognition, etc.) deployed on edge devices. To improve the energy efficiency of edge devices, domain-specific deep learning accelerators (DLAs) are designed with limited on-chip resources. The manifold DLA designs and evolving DNN topologies bring challenges for applications mapping and scheduling on hardware resources. In this article, we propose an automatic DNN mapping framework named AutoMap, given the hardware backend information. First, a computational graph representation called extended directed weighted graph (EDWG) is proposed, which realizes unified expression for both spatial and temporal network interlayer connections. Second, an associated partitioner is implemented for splitting an EDWG into subEDWGs, which incorporates the on-chip memory constraint and facilitates weight data reuse on chip. Finally, a dynamic memory allocation strategy is utilized to alleviate the feature storing burden introduced by the multivarious network sizes and connections. Compared to the baseline mapping methods, experimental results show that our proposed automatic mapping framework can help to speedup the execution of several DNNs on state-of-the-art DLAs, ranging from <inline-formula> <tex-math notation="LaTeX">1.27\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">3.45\times </tex-math></inline-formula>. The utilization of the PE array can increase from 20% to 64%.]]></description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2022.3232070</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerators ; Artificial neural networks ; Automatic speech recognition ; Chips (memory devices) ; Computational modeling ; Deep learning ; Deep learning accelerator (DLA) ; deep neural network (DNN) ; extended directed weighted graph (EDWG) ; Feature extraction ; Graph representations ; Graphical representations ; Hardware ; Hardware acceleration ; Interlayers ; Machine learning ; mapper ; Mapping ; Memory management ; Neural networks ; Object recognition ; Resource scheduling ; System-on-chip ; Task analysis ; Topology</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2023-09, Vol.42 (9), p.2994-3006</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-41443a421137b6f01ca1c3589f68f4e21a40d38bf702ebece4901b8726b322593</cites><orcidid>0000-0002-3870-5706 ; 0000-0003-3515-7764 ; 0000-0001-6662-4316 ; 0000-0002-3157-3464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9999408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9999408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yanhong</creatorcontrib><creatorcontrib>Zhao, Zihao</creatorcontrib><creatorcontrib>Jin, Xu</creatorcontrib><creatorcontrib>Zheng, Haotian</creatorcontrib><creatorcontrib>Nie, Maohua</creatorcontrib><creatorcontrib>Zou, Qiaosha</creatorcontrib><creatorcontrib>Shi, C.-J. Richard</creatorcontrib><title>AutoMap: Automatic Mapping of Neural Networks to Deep Learning Accelerators for Edge Devices</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description><![CDATA[Emerging deep neural networks (DNNs) have been emerging in applications (object detection, automatic speech recognition, etc.) deployed on edge devices. To improve the energy efficiency of edge devices, domain-specific deep learning accelerators (DLAs) are designed with limited on-chip resources. The manifold DLA designs and evolving DNN topologies bring challenges for applications mapping and scheduling on hardware resources. In this article, we propose an automatic DNN mapping framework named AutoMap, given the hardware backend information. First, a computational graph representation called extended directed weighted graph (EDWG) is proposed, which realizes unified expression for both spatial and temporal network interlayer connections. Second, an associated partitioner is implemented for splitting an EDWG into subEDWGs, which incorporates the on-chip memory constraint and facilitates weight data reuse on chip. Finally, a dynamic memory allocation strategy is utilized to alleviate the feature storing burden introduced by the multivarious network sizes and connections. Compared to the baseline mapping methods, experimental results show that our proposed automatic mapping framework can help to speedup the execution of several DNNs on state-of-the-art DLAs, ranging from <inline-formula> <tex-math notation="LaTeX">1.27\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">3.45\times </tex-math></inline-formula>. The utilization of the PE array can increase from 20% to 64%.]]></description><subject>Accelerators</subject><subject>Artificial neural networks</subject><subject>Automatic speech recognition</subject><subject>Chips (memory devices)</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Deep learning accelerator (DLA)</subject><subject>deep neural network (DNN)</subject><subject>extended directed weighted graph (EDWG)</subject><subject>Feature extraction</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Hardware</subject><subject>Hardware acceleration</subject><subject>Interlayers</subject><subject>Machine learning</subject><subject>mapper</subject><subject>Mapping</subject><subject>Memory management</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Resource scheduling</subject><subject>System-on-chip</subject><subject>Task analysis</subject><subject>Topology</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfiV22EVteUgFNmWHZDnuuEpp62AnIP4eR62YzZ0ZnXnoInRNyYRSUt4tp9VswghjE844I5KcoBEtucwEzekpGhEmVUZS_xxdxLghhIqclSP0UfWdfzHtPR6Snekai1PZNvs19g6_Qh_MNkn348NnxJ3HM4AWL8CE_cBU1sIWgul8iNj5gOerNSTmu7EQL9GZM9sIV0cdo_eH-XL6lC3eHp-n1SKzTORdelEIbgSjlMu6cIRaQy3PVekK5QQwagRZcVU7SRjUYEGUhNZKsqLmjOUlH6Pbw942-K8eYqc3vg_7dFIzledMFkrmiaIHygYfYwCn29DsTPjVlOjBRD2YqAcT9dHENHNzmGkA4J8vUwii-B9sLGv4</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Wang, Yanhong</creator><creator>Zhao, Zihao</creator><creator>Jin, Xu</creator><creator>Zheng, Haotian</creator><creator>Nie, Maohua</creator><creator>Zou, Qiaosha</creator><creator>Shi, C.-J. Richard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3870-5706</orcidid><orcidid>https://orcid.org/0000-0003-3515-7764</orcidid><orcidid>https://orcid.org/0000-0001-6662-4316</orcidid><orcidid>https://orcid.org/0000-0002-3157-3464</orcidid></search><sort><creationdate>20230901</creationdate><title>AutoMap: Automatic Mapping of Neural Networks to Deep Learning Accelerators for Edge Devices</title><author>Wang, Yanhong ; Zhao, Zihao ; Jin, Xu ; Zheng, Haotian ; Nie, Maohua ; Zou, Qiaosha ; Shi, C.-J. Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-41443a421137b6f01ca1c3589f68f4e21a40d38bf702ebece4901b8726b322593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerators</topic><topic>Artificial neural networks</topic><topic>Automatic speech recognition</topic><topic>Chips (memory devices)</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Deep learning accelerator (DLA)</topic><topic>deep neural network (DNN)</topic><topic>extended directed weighted graph (EDWG)</topic><topic>Feature extraction</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Hardware</topic><topic>Hardware acceleration</topic><topic>Interlayers</topic><topic>Machine learning</topic><topic>mapper</topic><topic>Mapping</topic><topic>Memory management</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Resource scheduling</topic><topic>System-on-chip</topic><topic>Task analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanhong</creatorcontrib><creatorcontrib>Zhao, Zihao</creatorcontrib><creatorcontrib>Jin, Xu</creatorcontrib><creatorcontrib>Zheng, Haotian</creatorcontrib><creatorcontrib>Nie, Maohua</creatorcontrib><creatorcontrib>Zou, Qiaosha</creatorcontrib><creatorcontrib>Shi, C.-J. Richard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yanhong</au><au>Zhao, Zihao</au><au>Jin, Xu</au><au>Zheng, Haotian</au><au>Nie, Maohua</au><au>Zou, Qiaosha</au><au>Shi, C.-J. Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AutoMap: Automatic Mapping of Neural Networks to Deep Learning Accelerators for Edge Devices</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>42</volume><issue>9</issue><spage>2994</spage><epage>3006</epage><pages>2994-3006</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract><![CDATA[Emerging deep neural networks (DNNs) have been emerging in applications (object detection, automatic speech recognition, etc.) deployed on edge devices. To improve the energy efficiency of edge devices, domain-specific deep learning accelerators (DLAs) are designed with limited on-chip resources. The manifold DLA designs and evolving DNN topologies bring challenges for applications mapping and scheduling on hardware resources. In this article, we propose an automatic DNN mapping framework named AutoMap, given the hardware backend information. First, a computational graph representation called extended directed weighted graph (EDWG) is proposed, which realizes unified expression for both spatial and temporal network interlayer connections. Second, an associated partitioner is implemented for splitting an EDWG into subEDWGs, which incorporates the on-chip memory constraint and facilitates weight data reuse on chip. Finally, a dynamic memory allocation strategy is utilized to alleviate the feature storing burden introduced by the multivarious network sizes and connections. Compared to the baseline mapping methods, experimental results show that our proposed automatic mapping framework can help to speedup the execution of several DNNs on state-of-the-art DLAs, ranging from <inline-formula> <tex-math notation="LaTeX">1.27\times </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">3.45\times </tex-math></inline-formula>. The utilization of the PE array can increase from 20% to 64%.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2022.3232070</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3870-5706</orcidid><orcidid>https://orcid.org/0000-0003-3515-7764</orcidid><orcidid>https://orcid.org/0000-0001-6662-4316</orcidid><orcidid>https://orcid.org/0000-0002-3157-3464</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2023-09, Vol.42 (9), p.2994-3006
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_2855276875
source IEEE Electronic Library (IEL)
subjects Accelerators
Artificial neural networks
Automatic speech recognition
Chips (memory devices)
Computational modeling
Deep learning
Deep learning accelerator (DLA)
deep neural network (DNN)
extended directed weighted graph (EDWG)
Feature extraction
Graph representations
Graphical representations
Hardware
Hardware acceleration
Interlayers
Machine learning
mapper
Mapping
Memory management
Neural networks
Object recognition
Resource scheduling
System-on-chip
Task analysis
Topology
title AutoMap: Automatic Mapping of Neural Networks to Deep Learning Accelerators for Edge Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AutoMap:%20Automatic%20Mapping%20of%20Neural%20Networks%20to%20Deep%20Learning%20Accelerators%20for%20Edge%20Devices&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Wang,%20Yanhong&rft.date=2023-09-01&rft.volume=42&rft.issue=9&rft.spage=2994&rft.epage=3006&rft.pages=2994-3006&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2022.3232070&rft_dat=%3Cproquest_RIE%3E2855276875%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2855276875&rft_id=info:pmid/&rft_ieee_id=9999408&rfr_iscdi=true