Generalizations of Some Differential Inequalities for Polynomials

We consider polynomials of the form and prove some results for the estimate of the polar derivative and generalize the results due to Aziz and Shah [ 4 ], Govil [ 12 ] and others.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contemporary mathematical analysis 2023-08, Vol.58 (4), p.282-288
Hauptverfasser: Mir, M. Y., Wali, S. L., Shah, W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue 4
container_start_page 282
container_title Journal of contemporary mathematical analysis
container_volume 58
creator Mir, M. Y.
Wali, S. L.
Shah, W. M.
description We consider polynomials of the form and prove some results for the estimate of the polar derivative and generalize the results due to Aziz and Shah [ 4 ], Govil [ 12 ] and others.
doi_str_mv 10.3103/S1068362323040076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2855096156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2855096156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8af9355fbae1f3a6ec47d2c01cbc2404b176f4a19c7f0002448483d11a7877723</originalsourceid><addsrcrecordid>eNp1kEFLAzEUhIMoWKs_wNuC59X3kmySPZaqtVBQqJ6XNE1ky27SJttD_fWmVPAgnt7AfDMPhpBbhHuGwB6WCEIxQRllwAGkOCMjrBkva47iPOtsl0f_klyltAGosuYjMplZb6Pu2i89tMGnIrhiGXpbPLbO2Wj90OqumHu722doaG0qXIjFW-gOPvTZS9fkwuVjb37umHw8P71PX8rF62w-nSxKQ4UaSqVdzarKrbRFx7Swhss1NYBmZSgHvkIpHNdYG-kAgHKuuGJrRC2VlJKyMbk79W5j2O1tGppN2EefXzZUVRXUAiuRKTxRJoaUonXNNra9jocGoTku1fxZKmfoKZMy6z9t_G3-P_QNSjlpeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2855096156</pqid></control><display><type>article</type><title>Generalizations of Some Differential Inequalities for Polynomials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mir, M. Y. ; Wali, S. L. ; Shah, W. M.</creator><creatorcontrib>Mir, M. Y. ; Wali, S. L. ; Shah, W. M.</creatorcontrib><description>We consider polynomials of the form and prove some results for the estimate of the polar derivative and generalize the results due to Aziz and Shah [ 4 ], Govil [ 12 ] and others.</description><identifier>ISSN: 1068-3623</identifier><identifier>EISSN: 1934-9416</identifier><identifier>DOI: 10.3103/S1068362323040076</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Journal of contemporary mathematical analysis, 2023-08, Vol.58 (4), p.282-288</ispartof><rights>Allerton Press, Inc. 2023</rights><rights>Allerton Press, Inc. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8af9355fbae1f3a6ec47d2c01cbc2404b176f4a19c7f0002448483d11a7877723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068362323040076$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068362323040076$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mir, M. Y.</creatorcontrib><creatorcontrib>Wali, S. L.</creatorcontrib><creatorcontrib>Shah, W. M.</creatorcontrib><title>Generalizations of Some Differential Inequalities for Polynomials</title><title>Journal of contemporary mathematical analysis</title><addtitle>J. Contemp. Mathemat. Anal</addtitle><description>We consider polynomials of the form and prove some results for the estimate of the polar derivative and generalize the results due to Aziz and Shah [ 4 ], Govil [ 12 ] and others.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>1068-3623</issn><issn>1934-9416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEUhIMoWKs_wNuC59X3kmySPZaqtVBQqJ6XNE1ky27SJttD_fWmVPAgnt7AfDMPhpBbhHuGwB6WCEIxQRllwAGkOCMjrBkva47iPOtsl0f_klyltAGosuYjMplZb6Pu2i89tMGnIrhiGXpbPLbO2Wj90OqumHu722doaG0qXIjFW-gOPvTZS9fkwuVjb37umHw8P71PX8rF62w-nSxKQ4UaSqVdzarKrbRFx7Swhss1NYBmZSgHvkIpHNdYG-kAgHKuuGJrRC2VlJKyMbk79W5j2O1tGppN2EefXzZUVRXUAiuRKTxRJoaUonXNNra9jocGoTku1fxZKmfoKZMy6z9t_G3-P_QNSjlpeA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Mir, M. Y.</creator><creator>Wali, S. L.</creator><creator>Shah, W. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Generalizations of Some Differential Inequalities for Polynomials</title><author>Mir, M. Y. ; Wali, S. L. ; Shah, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8af9355fbae1f3a6ec47d2c01cbc2404b176f4a19c7f0002448483d11a7877723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mir, M. Y.</creatorcontrib><creatorcontrib>Wali, S. L.</creatorcontrib><creatorcontrib>Shah, W. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of contemporary mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mir, M. Y.</au><au>Wali, S. L.</au><au>Shah, W. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizations of Some Differential Inequalities for Polynomials</atitle><jtitle>Journal of contemporary mathematical analysis</jtitle><stitle>J. Contemp. Mathemat. Anal</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>58</volume><issue>4</issue><spage>282</spage><epage>288</epage><pages>282-288</pages><issn>1068-3623</issn><eissn>1934-9416</eissn><abstract>We consider polynomials of the form and prove some results for the estimate of the polar derivative and generalize the results due to Aziz and Shah [ 4 ], Govil [ 12 ] and others.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068362323040076</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3623
ispartof Journal of contemporary mathematical analysis, 2023-08, Vol.58 (4), p.282-288
issn 1068-3623
1934-9416
language eng
recordid cdi_proquest_journals_2855096156
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
Polynomials
title Generalizations of Some Differential Inequalities for Polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizations%20of%20Some%20Differential%20Inequalities%20for%20Polynomials&rft.jtitle=Journal%20of%20contemporary%20mathematical%20analysis&rft.au=Mir,%20M.%20Y.&rft.date=2023-08-01&rft.volume=58&rft.issue=4&rft.spage=282&rft.epage=288&rft.pages=282-288&rft.issn=1068-3623&rft.eissn=1934-9416&rft_id=info:doi/10.3103/S1068362323040076&rft_dat=%3Cproquest_cross%3E2855096156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2855096156&rft_id=info:pmid/&rfr_iscdi=true