The first HyDRA challenge for computational vibrational spectroscopy
Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-08, Vol.25 (33), p.2289-2212 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2212 |
---|---|
container_issue | 33 |
container_start_page | 2289 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Fischer, Taija L Bödecker, Margarethe Schweer, Sophie M Dupont, Jennifer Lepère, Valéria Zehnacker-Rentien, Anne Suhm, Martin A Schröder, Benjamin Henkes, Tobias Andrada, Diego M Balabin, Roman M Singh, Haobam Kisan Bhattacharyya, Himangshu Pratim Sarma, Manabendra Käser, Silvan Töpfer, Kai Vazquez-Salazar, Luis I Boittier, Eric D Meuwly, Markus Mandelli, Giacomo Lanzi, Cecilia Conte, Riccardo Ceotto, Michele Dietrich, Fabian Cisternas, Vicente Gnanasekaran, Ramachandran Hippler, Michael Jarraya, Mahmoud Hochlaf, Majdi Viswanathan, Narasimhan Nevolianis, Thomas Rath, Gabriel Kopp, Wassja A Leonhard, Kai Mata, Ricardo A |
description | Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-
cis
-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.
A joint community effort to critically evaluate quantum chemical approaches to the prediction of vibrational shifts of hydrates in the gas phase. |
doi_str_mv | 10.1039/d3cp01216f |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2854976072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854976072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a62994b2ea41ec170fa909d1d1a1b6c0496c21ca6d91aa03a54e0756e1b3f923</originalsourceid><addsrcrecordid>eNpd0c1LwzAUAPAgCs7pxbtQ8KLCNC9J0-U4NueEgSK7h9c0dR3dUpN2sP_ebtUJnt7j8SPvI4RcA30EytVTxk1FgYHMT0gPhOQDRYfi9Jgn8pxchLCilEIMvEcmi6WN8sKHOprtJh-jyCyxLO3ms606Hxm3rpoa68JtsIy2Rep_81BZU3sXjKt2l-QsxzLYq5_YJ4vp82I8G8zfXl7Ho_nA8KGoByiZUiJlFgVYAwnNUVGVQQYIqTRUKGkYGJSZAkTKMRaWJrG0kPJcMd4n992z7Yi68sUa_U47LPRsNNf7GhWMKwF8C62962zl3VdjQ63XRTC2LHFjXRM0G8aSM2BStPT2H125xrc7HpRQiaTJvvlDp0y7dPA2P04AVO9vryd8_H64_bTFNx32wRzd39_wb90Gfqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854976072</pqid></control><display><type>article</type><title>The first HyDRA challenge for computational vibrational spectroscopy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Fischer, Taija L ; Bödecker, Margarethe ; Schweer, Sophie M ; Dupont, Jennifer ; Lepère, Valéria ; Zehnacker-Rentien, Anne ; Suhm, Martin A ; Schröder, Benjamin ; Henkes, Tobias ; Andrada, Diego M ; Balabin, Roman M ; Singh, Haobam Kisan ; Bhattacharyya, Himangshu Pratim ; Sarma, Manabendra ; Käser, Silvan ; Töpfer, Kai ; Vazquez-Salazar, Luis I ; Boittier, Eric D ; Meuwly, Markus ; Mandelli, Giacomo ; Lanzi, Cecilia ; Conte, Riccardo ; Ceotto, Michele ; Dietrich, Fabian ; Cisternas, Vicente ; Gnanasekaran, Ramachandran ; Hippler, Michael ; Jarraya, Mahmoud ; Hochlaf, Majdi ; Viswanathan, Narasimhan ; Nevolianis, Thomas ; Rath, Gabriel ; Kopp, Wassja A ; Leonhard, Kai ; Mata, Ricardo A</creator><creatorcontrib>Fischer, Taija L ; Bödecker, Margarethe ; Schweer, Sophie M ; Dupont, Jennifer ; Lepère, Valéria ; Zehnacker-Rentien, Anne ; Suhm, Martin A ; Schröder, Benjamin ; Henkes, Tobias ; Andrada, Diego M ; Balabin, Roman M ; Singh, Haobam Kisan ; Bhattacharyya, Himangshu Pratim ; Sarma, Manabendra ; Käser, Silvan ; Töpfer, Kai ; Vazquez-Salazar, Luis I ; Boittier, Eric D ; Meuwly, Markus ; Mandelli, Giacomo ; Lanzi, Cecilia ; Conte, Riccardo ; Ceotto, Michele ; Dietrich, Fabian ; Cisternas, Vicente ; Gnanasekaran, Ramachandran ; Hippler, Michael ; Jarraya, Mahmoud ; Hochlaf, Majdi ; Viswanathan, Narasimhan ; Nevolianis, Thomas ; Rath, Gabriel ; Kopp, Wassja A ; Leonhard, Kai ; Mata, Ricardo A</creatorcontrib><description>Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-
cis
-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.
A joint community effort to critically evaluate quantum chemical approaches to the prediction of vibrational shifts of hydrates in the gas phase.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01216f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Benchmarks ; Chemical Sciences ; Environmental effects ; Low temperature ; Machine learning ; or physical chemistry ; Organic chemistry ; Quantum chemistry ; Quantum mechanics ; Spectrum analysis ; Tetrahydrofuran ; Theoretical and</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (33), p.2289-2212</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a62994b2ea41ec170fa909d1d1a1b6c0496c21ca6d91aa03a54e0756e1b3f923</citedby><cites>FETCH-LOGICAL-c384t-a62994b2ea41ec170fa909d1d1a1b6c0496c21ca6d91aa03a54e0756e1b3f923</cites><orcidid>0000-0001-6347-5108 ; 0000-0002-3956-3922 ; 0000-0001-9374-1809 ; 0000-0002-4737-7978 ; 0000-0003-0657-629X ; 0000-0002-2578-4900 ; 0000-0002-4650-9641 ; 0000-0002-8270-3409 ; 0000-0002-2720-3364 ; 0000-0003-2050-3628 ; 0000-0001-5540-0667 ; 0000-0002-5200-2273 ; 0000-0002-5141-871X ; 0000-0001-8147-3464 ; 0000-0001-7930-8806 ; 0000-0003-2515-7859 ; 0000-0001-5813-5248 ; 0000-0001-6231-6957 ; 0000-0003-4478-5842 ; 0000-0002-7924-8302 ; 0000-0001-9861-7612 ; 0000-0001-7633-9658 ; 0000-0002-4016-2034 ; 0000-0001-8841-7705 ; 0000-0003-3026-3875 ; 0000-0002-3641-8519 ; 0000-0002-5883-3801 ; 0000-0002-9611-1017 ; 0000-0002-6035-4252 ; 0000-0002-3827-0642 ; 0000-0003-0369-3853 ; 0000-0002-6410-7101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04239413$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischer, Taija L</creatorcontrib><creatorcontrib>Bödecker, Margarethe</creatorcontrib><creatorcontrib>Schweer, Sophie M</creatorcontrib><creatorcontrib>Dupont, Jennifer</creatorcontrib><creatorcontrib>Lepère, Valéria</creatorcontrib><creatorcontrib>Zehnacker-Rentien, Anne</creatorcontrib><creatorcontrib>Suhm, Martin A</creatorcontrib><creatorcontrib>Schröder, Benjamin</creatorcontrib><creatorcontrib>Henkes, Tobias</creatorcontrib><creatorcontrib>Andrada, Diego M</creatorcontrib><creatorcontrib>Balabin, Roman M</creatorcontrib><creatorcontrib>Singh, Haobam Kisan</creatorcontrib><creatorcontrib>Bhattacharyya, Himangshu Pratim</creatorcontrib><creatorcontrib>Sarma, Manabendra</creatorcontrib><creatorcontrib>Käser, Silvan</creatorcontrib><creatorcontrib>Töpfer, Kai</creatorcontrib><creatorcontrib>Vazquez-Salazar, Luis I</creatorcontrib><creatorcontrib>Boittier, Eric D</creatorcontrib><creatorcontrib>Meuwly, Markus</creatorcontrib><creatorcontrib>Mandelli, Giacomo</creatorcontrib><creatorcontrib>Lanzi, Cecilia</creatorcontrib><creatorcontrib>Conte, Riccardo</creatorcontrib><creatorcontrib>Ceotto, Michele</creatorcontrib><creatorcontrib>Dietrich, Fabian</creatorcontrib><creatorcontrib>Cisternas, Vicente</creatorcontrib><creatorcontrib>Gnanasekaran, Ramachandran</creatorcontrib><creatorcontrib>Hippler, Michael</creatorcontrib><creatorcontrib>Jarraya, Mahmoud</creatorcontrib><creatorcontrib>Hochlaf, Majdi</creatorcontrib><creatorcontrib>Viswanathan, Narasimhan</creatorcontrib><creatorcontrib>Nevolianis, Thomas</creatorcontrib><creatorcontrib>Rath, Gabriel</creatorcontrib><creatorcontrib>Kopp, Wassja A</creatorcontrib><creatorcontrib>Leonhard, Kai</creatorcontrib><creatorcontrib>Mata, Ricardo A</creatorcontrib><title>The first HyDRA challenge for computational vibrational spectroscopy</title><title>Physical chemistry chemical physics : PCCP</title><description>Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-
cis
-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.
A joint community effort to critically evaluate quantum chemical approaches to the prediction of vibrational shifts of hydrates in the gas phase.</description><subject>Benchmarks</subject><subject>Chemical Sciences</subject><subject>Environmental effects</subject><subject>Low temperature</subject><subject>Machine learning</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Quantum chemistry</subject><subject>Quantum mechanics</subject><subject>Spectrum analysis</subject><subject>Tetrahydrofuran</subject><subject>Theoretical and</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAUAPAgCs7pxbtQ8KLCNC9J0-U4NueEgSK7h9c0dR3dUpN2sP_ebtUJnt7j8SPvI4RcA30EytVTxk1FgYHMT0gPhOQDRYfi9Jgn8pxchLCilEIMvEcmi6WN8sKHOprtJh-jyCyxLO3ms606Hxm3rpoa68JtsIy2Rep_81BZU3sXjKt2l-QsxzLYq5_YJ4vp82I8G8zfXl7Ho_nA8KGoByiZUiJlFgVYAwnNUVGVQQYIqTRUKGkYGJSZAkTKMRaWJrG0kPJcMd4n992z7Yi68sUa_U47LPRsNNf7GhWMKwF8C62962zl3VdjQ63XRTC2LHFjXRM0G8aSM2BStPT2H125xrc7HpRQiaTJvvlDp0y7dPA2P04AVO9vryd8_H64_bTFNx32wRzd39_wb90Gfqg</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Fischer, Taija L</creator><creator>Bödecker, Margarethe</creator><creator>Schweer, Sophie M</creator><creator>Dupont, Jennifer</creator><creator>Lepère, Valéria</creator><creator>Zehnacker-Rentien, Anne</creator><creator>Suhm, Martin A</creator><creator>Schröder, Benjamin</creator><creator>Henkes, Tobias</creator><creator>Andrada, Diego M</creator><creator>Balabin, Roman M</creator><creator>Singh, Haobam Kisan</creator><creator>Bhattacharyya, Himangshu Pratim</creator><creator>Sarma, Manabendra</creator><creator>Käser, Silvan</creator><creator>Töpfer, Kai</creator><creator>Vazquez-Salazar, Luis I</creator><creator>Boittier, Eric D</creator><creator>Meuwly, Markus</creator><creator>Mandelli, Giacomo</creator><creator>Lanzi, Cecilia</creator><creator>Conte, Riccardo</creator><creator>Ceotto, Michele</creator><creator>Dietrich, Fabian</creator><creator>Cisternas, Vicente</creator><creator>Gnanasekaran, Ramachandran</creator><creator>Hippler, Michael</creator><creator>Jarraya, Mahmoud</creator><creator>Hochlaf, Majdi</creator><creator>Viswanathan, Narasimhan</creator><creator>Nevolianis, Thomas</creator><creator>Rath, Gabriel</creator><creator>Kopp, Wassja A</creator><creator>Leonhard, Kai</creator><creator>Mata, Ricardo A</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6347-5108</orcidid><orcidid>https://orcid.org/0000-0002-3956-3922</orcidid><orcidid>https://orcid.org/0000-0001-9374-1809</orcidid><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid><orcidid>https://orcid.org/0000-0003-0657-629X</orcidid><orcidid>https://orcid.org/0000-0002-2578-4900</orcidid><orcidid>https://orcid.org/0000-0002-4650-9641</orcidid><orcidid>https://orcid.org/0000-0002-8270-3409</orcidid><orcidid>https://orcid.org/0000-0002-2720-3364</orcidid><orcidid>https://orcid.org/0000-0003-2050-3628</orcidid><orcidid>https://orcid.org/0000-0001-5540-0667</orcidid><orcidid>https://orcid.org/0000-0002-5200-2273</orcidid><orcidid>https://orcid.org/0000-0002-5141-871X</orcidid><orcidid>https://orcid.org/0000-0001-8147-3464</orcidid><orcidid>https://orcid.org/0000-0001-7930-8806</orcidid><orcidid>https://orcid.org/0000-0003-2515-7859</orcidid><orcidid>https://orcid.org/0000-0001-5813-5248</orcidid><orcidid>https://orcid.org/0000-0001-6231-6957</orcidid><orcidid>https://orcid.org/0000-0003-4478-5842</orcidid><orcidid>https://orcid.org/0000-0002-7924-8302</orcidid><orcidid>https://orcid.org/0000-0001-9861-7612</orcidid><orcidid>https://orcid.org/0000-0001-7633-9658</orcidid><orcidid>https://orcid.org/0000-0002-4016-2034</orcidid><orcidid>https://orcid.org/0000-0001-8841-7705</orcidid><orcidid>https://orcid.org/0000-0003-3026-3875</orcidid><orcidid>https://orcid.org/0000-0002-3641-8519</orcidid><orcidid>https://orcid.org/0000-0002-5883-3801</orcidid><orcidid>https://orcid.org/0000-0002-9611-1017</orcidid><orcidid>https://orcid.org/0000-0002-6035-4252</orcidid><orcidid>https://orcid.org/0000-0002-3827-0642</orcidid><orcidid>https://orcid.org/0000-0003-0369-3853</orcidid><orcidid>https://orcid.org/0000-0002-6410-7101</orcidid></search><sort><creationdate>20230823</creationdate><title>The first HyDRA challenge for computational vibrational spectroscopy</title><author>Fischer, Taija L ; Bödecker, Margarethe ; Schweer, Sophie M ; Dupont, Jennifer ; Lepère, Valéria ; Zehnacker-Rentien, Anne ; Suhm, Martin A ; Schröder, Benjamin ; Henkes, Tobias ; Andrada, Diego M ; Balabin, Roman M ; Singh, Haobam Kisan ; Bhattacharyya, Himangshu Pratim ; Sarma, Manabendra ; Käser, Silvan ; Töpfer, Kai ; Vazquez-Salazar, Luis I ; Boittier, Eric D ; Meuwly, Markus ; Mandelli, Giacomo ; Lanzi, Cecilia ; Conte, Riccardo ; Ceotto, Michele ; Dietrich, Fabian ; Cisternas, Vicente ; Gnanasekaran, Ramachandran ; Hippler, Michael ; Jarraya, Mahmoud ; Hochlaf, Majdi ; Viswanathan, Narasimhan ; Nevolianis, Thomas ; Rath, Gabriel ; Kopp, Wassja A ; Leonhard, Kai ; Mata, Ricardo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a62994b2ea41ec170fa909d1d1a1b6c0496c21ca6d91aa03a54e0756e1b3f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmarks</topic><topic>Chemical Sciences</topic><topic>Environmental effects</topic><topic>Low temperature</topic><topic>Machine learning</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Quantum chemistry</topic><topic>Quantum mechanics</topic><topic>Spectrum analysis</topic><topic>Tetrahydrofuran</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Taija L</creatorcontrib><creatorcontrib>Bödecker, Margarethe</creatorcontrib><creatorcontrib>Schweer, Sophie M</creatorcontrib><creatorcontrib>Dupont, Jennifer</creatorcontrib><creatorcontrib>Lepère, Valéria</creatorcontrib><creatorcontrib>Zehnacker-Rentien, Anne</creatorcontrib><creatorcontrib>Suhm, Martin A</creatorcontrib><creatorcontrib>Schröder, Benjamin</creatorcontrib><creatorcontrib>Henkes, Tobias</creatorcontrib><creatorcontrib>Andrada, Diego M</creatorcontrib><creatorcontrib>Balabin, Roman M</creatorcontrib><creatorcontrib>Singh, Haobam Kisan</creatorcontrib><creatorcontrib>Bhattacharyya, Himangshu Pratim</creatorcontrib><creatorcontrib>Sarma, Manabendra</creatorcontrib><creatorcontrib>Käser, Silvan</creatorcontrib><creatorcontrib>Töpfer, Kai</creatorcontrib><creatorcontrib>Vazquez-Salazar, Luis I</creatorcontrib><creatorcontrib>Boittier, Eric D</creatorcontrib><creatorcontrib>Meuwly, Markus</creatorcontrib><creatorcontrib>Mandelli, Giacomo</creatorcontrib><creatorcontrib>Lanzi, Cecilia</creatorcontrib><creatorcontrib>Conte, Riccardo</creatorcontrib><creatorcontrib>Ceotto, Michele</creatorcontrib><creatorcontrib>Dietrich, Fabian</creatorcontrib><creatorcontrib>Cisternas, Vicente</creatorcontrib><creatorcontrib>Gnanasekaran, Ramachandran</creatorcontrib><creatorcontrib>Hippler, Michael</creatorcontrib><creatorcontrib>Jarraya, Mahmoud</creatorcontrib><creatorcontrib>Hochlaf, Majdi</creatorcontrib><creatorcontrib>Viswanathan, Narasimhan</creatorcontrib><creatorcontrib>Nevolianis, Thomas</creatorcontrib><creatorcontrib>Rath, Gabriel</creatorcontrib><creatorcontrib>Kopp, Wassja A</creatorcontrib><creatorcontrib>Leonhard, Kai</creatorcontrib><creatorcontrib>Mata, Ricardo A</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Taija L</au><au>Bödecker, Margarethe</au><au>Schweer, Sophie M</au><au>Dupont, Jennifer</au><au>Lepère, Valéria</au><au>Zehnacker-Rentien, Anne</au><au>Suhm, Martin A</au><au>Schröder, Benjamin</au><au>Henkes, Tobias</au><au>Andrada, Diego M</au><au>Balabin, Roman M</au><au>Singh, Haobam Kisan</au><au>Bhattacharyya, Himangshu Pratim</au><au>Sarma, Manabendra</au><au>Käser, Silvan</au><au>Töpfer, Kai</au><au>Vazquez-Salazar, Luis I</au><au>Boittier, Eric D</au><au>Meuwly, Markus</au><au>Mandelli, Giacomo</au><au>Lanzi, Cecilia</au><au>Conte, Riccardo</au><au>Ceotto, Michele</au><au>Dietrich, Fabian</au><au>Cisternas, Vicente</au><au>Gnanasekaran, Ramachandran</au><au>Hippler, Michael</au><au>Jarraya, Mahmoud</au><au>Hochlaf, Majdi</au><au>Viswanathan, Narasimhan</au><au>Nevolianis, Thomas</au><au>Rath, Gabriel</au><au>Kopp, Wassja A</au><au>Leonhard, Kai</au><au>Mata, Ricardo A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The first HyDRA challenge for computational vibrational spectroscopy</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-08-23</date><risdate>2023</risdate><volume>25</volume><issue>33</issue><spage>2289</spage><epage>2212</epage><pages>2289-2212</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-
cis
-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.
A joint community effort to critically evaluate quantum chemical approaches to the prediction of vibrational shifts of hydrates in the gas phase.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp01216f</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6347-5108</orcidid><orcidid>https://orcid.org/0000-0002-3956-3922</orcidid><orcidid>https://orcid.org/0000-0001-9374-1809</orcidid><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid><orcidid>https://orcid.org/0000-0003-0657-629X</orcidid><orcidid>https://orcid.org/0000-0002-2578-4900</orcidid><orcidid>https://orcid.org/0000-0002-4650-9641</orcidid><orcidid>https://orcid.org/0000-0002-8270-3409</orcidid><orcidid>https://orcid.org/0000-0002-2720-3364</orcidid><orcidid>https://orcid.org/0000-0003-2050-3628</orcidid><orcidid>https://orcid.org/0000-0001-5540-0667</orcidid><orcidid>https://orcid.org/0000-0002-5200-2273</orcidid><orcidid>https://orcid.org/0000-0002-5141-871X</orcidid><orcidid>https://orcid.org/0000-0001-8147-3464</orcidid><orcidid>https://orcid.org/0000-0001-7930-8806</orcidid><orcidid>https://orcid.org/0000-0003-2515-7859</orcidid><orcidid>https://orcid.org/0000-0001-5813-5248</orcidid><orcidid>https://orcid.org/0000-0001-6231-6957</orcidid><orcidid>https://orcid.org/0000-0003-4478-5842</orcidid><orcidid>https://orcid.org/0000-0002-7924-8302</orcidid><orcidid>https://orcid.org/0000-0001-9861-7612</orcidid><orcidid>https://orcid.org/0000-0001-7633-9658</orcidid><orcidid>https://orcid.org/0000-0002-4016-2034</orcidid><orcidid>https://orcid.org/0000-0001-8841-7705</orcidid><orcidid>https://orcid.org/0000-0003-3026-3875</orcidid><orcidid>https://orcid.org/0000-0002-3641-8519</orcidid><orcidid>https://orcid.org/0000-0002-5883-3801</orcidid><orcidid>https://orcid.org/0000-0002-9611-1017</orcidid><orcidid>https://orcid.org/0000-0002-6035-4252</orcidid><orcidid>https://orcid.org/0000-0002-3827-0642</orcidid><orcidid>https://orcid.org/0000-0003-0369-3853</orcidid><orcidid>https://orcid.org/0000-0002-6410-7101</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (33), p.2289-2212 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_journals_2854976072 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Benchmarks Chemical Sciences Environmental effects Low temperature Machine learning or physical chemistry Organic chemistry Quantum chemistry Quantum mechanics Spectrum analysis Tetrahydrofuran Theoretical and |
title | The first HyDRA challenge for computational vibrational spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20first%20HyDRA%20challenge%20for%20computational%20vibrational%20spectroscopy&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Fischer,%20Taija%20L&rft.date=2023-08-23&rft.volume=25&rft.issue=33&rft.spage=2289&rft.epage=2212&rft.pages=2289-2212&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01216f&rft_dat=%3Cproquest_rsc_p%3E2854976072%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854976072&rft_id=info:pmid/&rfr_iscdi=true |