The first HyDRA challenge for computational vibrational spectroscopy

Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-08, Vol.25 (33), p.2289-2212
Hauptverfasser: Fischer, Taija L, Bödecker, Margarethe, Schweer, Sophie M, Dupont, Jennifer, Lepère, Valéria, Zehnacker-Rentien, Anne, Suhm, Martin A, Schröder, Benjamin, Henkes, Tobias, Andrada, Diego M, Balabin, Roman M, Singh, Haobam Kisan, Bhattacharyya, Himangshu Pratim, Sarma, Manabendra, Käser, Silvan, Töpfer, Kai, Vazquez-Salazar, Luis I, Boittier, Eric D, Meuwly, Markus, Mandelli, Giacomo, Lanzi, Cecilia, Conte, Riccardo, Ceotto, Michele, Dietrich, Fabian, Cisternas, Vicente, Gnanasekaran, Ramachandran, Hippler, Michael, Jarraya, Mahmoud, Hochlaf, Majdi, Viswanathan, Narasimhan, Nevolianis, Thomas, Rath, Gabriel, Kopp, Wassja A, Leonhard, Kai, Mata, Ricardo A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2212
container_issue 33
container_start_page 2289
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Fischer, Taija L
Bödecker, Margarethe
Schweer, Sophie M
Dupont, Jennifer
Lepère, Valéria
Zehnacker-Rentien, Anne
Suhm, Martin A
Schröder, Benjamin
Henkes, Tobias
Andrada, Diego M
Balabin, Roman M
Singh, Haobam Kisan
Bhattacharyya, Himangshu Pratim
Sarma, Manabendra
Käser, Silvan
Töpfer, Kai
Vazquez-Salazar, Luis I
Boittier, Eric D
Meuwly, Markus
Mandelli, Giacomo
Lanzi, Cecilia
Conte, Riccardo
Ceotto, Michele
Dietrich, Fabian
Cisternas, Vicente
Gnanasekaran, Ramachandran
Hippler, Michael
Jarraya, Mahmoud
Hochlaf, Majdi
Viswanathan, Narasimhan
Nevolianis, Thomas
Rath, Gabriel
Kopp, Wassja A
Leonhard, Kai
Mata, Ricardo A
description Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane- cis -1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies. A joint community effort to critically evaluate quantum chemical approaches to the prediction of vibrational shifts of hydrates in the gas phase.
doi_str_mv 10.1039/d3cp01216f
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2854976072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854976072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a62994b2ea41ec170fa909d1d1a1b6c0496c21ca6d91aa03a54e0756e1b3f923</originalsourceid><addsrcrecordid>eNpd0c1LwzAUAPAgCs7pxbtQ8KLCNC9J0-U4NueEgSK7h9c0dR3dUpN2sP_ebtUJnt7j8SPvI4RcA30EytVTxk1FgYHMT0gPhOQDRYfi9Jgn8pxchLCilEIMvEcmi6WN8sKHOprtJh-jyCyxLO3ms606Hxm3rpoa68JtsIy2Rep_81BZU3sXjKt2l-QsxzLYq5_YJ4vp82I8G8zfXl7Ho_nA8KGoByiZUiJlFgVYAwnNUVGVQQYIqTRUKGkYGJSZAkTKMRaWJrG0kPJcMd4n992z7Yi68sUa_U47LPRsNNf7GhWMKwF8C62962zl3VdjQ63XRTC2LHFjXRM0G8aSM2BStPT2H125xrc7HpRQiaTJvvlDp0y7dPA2P04AVO9vryd8_H64_bTFNx32wRzd39_wb90Gfqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854976072</pqid></control><display><type>article</type><title>The first HyDRA challenge for computational vibrational spectroscopy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Fischer, Taija L ; Bödecker, Margarethe ; Schweer, Sophie M ; Dupont, Jennifer ; Lepère, Valéria ; Zehnacker-Rentien, Anne ; Suhm, Martin A ; Schröder, Benjamin ; Henkes, Tobias ; Andrada, Diego M ; Balabin, Roman M ; Singh, Haobam Kisan ; Bhattacharyya, Himangshu Pratim ; Sarma, Manabendra ; Käser, Silvan ; Töpfer, Kai ; Vazquez-Salazar, Luis I ; Boittier, Eric D ; Meuwly, Markus ; Mandelli, Giacomo ; Lanzi, Cecilia ; Conte, Riccardo ; Ceotto, Michele ; Dietrich, Fabian ; Cisternas, Vicente ; Gnanasekaran, Ramachandran ; Hippler, Michael ; Jarraya, Mahmoud ; Hochlaf, Majdi ; Viswanathan, Narasimhan ; Nevolianis, Thomas ; Rath, Gabriel ; Kopp, Wassja A ; Leonhard, Kai ; Mata, Ricardo A</creator><creatorcontrib>Fischer, Taija L ; Bödecker, Margarethe ; Schweer, Sophie M ; Dupont, Jennifer ; Lepère, Valéria ; Zehnacker-Rentien, Anne ; Suhm, Martin A ; Schröder, Benjamin ; Henkes, Tobias ; Andrada, Diego M ; Balabin, Roman M ; Singh, Haobam Kisan ; Bhattacharyya, Himangshu Pratim ; Sarma, Manabendra ; Käser, Silvan ; Töpfer, Kai ; Vazquez-Salazar, Luis I ; Boittier, Eric D ; Meuwly, Markus ; Mandelli, Giacomo ; Lanzi, Cecilia ; Conte, Riccardo ; Ceotto, Michele ; Dietrich, Fabian ; Cisternas, Vicente ; Gnanasekaran, Ramachandran ; Hippler, Michael ; Jarraya, Mahmoud ; Hochlaf, Majdi ; Viswanathan, Narasimhan ; Nevolianis, Thomas ; Rath, Gabriel ; Kopp, Wassja A ; Leonhard, Kai ; Mata, Ricardo A</creatorcontrib><description>Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane- cis -1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies. A joint community effort to critically evaluate quantum chemical approaches to the prediction of vibrational shifts of hydrates in the gas phase.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01216f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Benchmarks ; Chemical Sciences ; Environmental effects ; Low temperature ; Machine learning ; or physical chemistry ; Organic chemistry ; Quantum chemistry ; Quantum mechanics ; Spectrum analysis ; Tetrahydrofuran ; Theoretical and</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (33), p.2289-2212</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a62994b2ea41ec170fa909d1d1a1b6c0496c21ca6d91aa03a54e0756e1b3f923</citedby><cites>FETCH-LOGICAL-c384t-a62994b2ea41ec170fa909d1d1a1b6c0496c21ca6d91aa03a54e0756e1b3f923</cites><orcidid>0000-0001-6347-5108 ; 0000-0002-3956-3922 ; 0000-0001-9374-1809 ; 0000-0002-4737-7978 ; 0000-0003-0657-629X ; 0000-0002-2578-4900 ; 0000-0002-4650-9641 ; 0000-0002-8270-3409 ; 0000-0002-2720-3364 ; 0000-0003-2050-3628 ; 0000-0001-5540-0667 ; 0000-0002-5200-2273 ; 0000-0002-5141-871X ; 0000-0001-8147-3464 ; 0000-0001-7930-8806 ; 0000-0003-2515-7859 ; 0000-0001-5813-5248 ; 0000-0001-6231-6957 ; 0000-0003-4478-5842 ; 0000-0002-7924-8302 ; 0000-0001-9861-7612 ; 0000-0001-7633-9658 ; 0000-0002-4016-2034 ; 0000-0001-8841-7705 ; 0000-0003-3026-3875 ; 0000-0002-3641-8519 ; 0000-0002-5883-3801 ; 0000-0002-9611-1017 ; 0000-0002-6035-4252 ; 0000-0002-3827-0642 ; 0000-0003-0369-3853 ; 0000-0002-6410-7101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04239413$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischer, Taija L</creatorcontrib><creatorcontrib>Bödecker, Margarethe</creatorcontrib><creatorcontrib>Schweer, Sophie M</creatorcontrib><creatorcontrib>Dupont, Jennifer</creatorcontrib><creatorcontrib>Lepère, Valéria</creatorcontrib><creatorcontrib>Zehnacker-Rentien, Anne</creatorcontrib><creatorcontrib>Suhm, Martin A</creatorcontrib><creatorcontrib>Schröder, Benjamin</creatorcontrib><creatorcontrib>Henkes, Tobias</creatorcontrib><creatorcontrib>Andrada, Diego M</creatorcontrib><creatorcontrib>Balabin, Roman M</creatorcontrib><creatorcontrib>Singh, Haobam Kisan</creatorcontrib><creatorcontrib>Bhattacharyya, Himangshu Pratim</creatorcontrib><creatorcontrib>Sarma, Manabendra</creatorcontrib><creatorcontrib>Käser, Silvan</creatorcontrib><creatorcontrib>Töpfer, Kai</creatorcontrib><creatorcontrib>Vazquez-Salazar, Luis I</creatorcontrib><creatorcontrib>Boittier, Eric D</creatorcontrib><creatorcontrib>Meuwly, Markus</creatorcontrib><creatorcontrib>Mandelli, Giacomo</creatorcontrib><creatorcontrib>Lanzi, Cecilia</creatorcontrib><creatorcontrib>Conte, Riccardo</creatorcontrib><creatorcontrib>Ceotto, Michele</creatorcontrib><creatorcontrib>Dietrich, Fabian</creatorcontrib><creatorcontrib>Cisternas, Vicente</creatorcontrib><creatorcontrib>Gnanasekaran, Ramachandran</creatorcontrib><creatorcontrib>Hippler, Michael</creatorcontrib><creatorcontrib>Jarraya, Mahmoud</creatorcontrib><creatorcontrib>Hochlaf, Majdi</creatorcontrib><creatorcontrib>Viswanathan, Narasimhan</creatorcontrib><creatorcontrib>Nevolianis, Thomas</creatorcontrib><creatorcontrib>Rath, Gabriel</creatorcontrib><creatorcontrib>Kopp, Wassja A</creatorcontrib><creatorcontrib>Leonhard, Kai</creatorcontrib><creatorcontrib>Mata, Ricardo A</creatorcontrib><title>The first HyDRA challenge for computational vibrational spectroscopy</title><title>Physical chemistry chemical physics : PCCP</title><description>Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane- cis -1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies. A joint community effort to critically evaluate quantum chemical approaches to the prediction of vibrational shifts of hydrates in the gas phase.</description><subject>Benchmarks</subject><subject>Chemical Sciences</subject><subject>Environmental effects</subject><subject>Low temperature</subject><subject>Machine learning</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Quantum chemistry</subject><subject>Quantum mechanics</subject><subject>Spectrum analysis</subject><subject>Tetrahydrofuran</subject><subject>Theoretical and</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAUAPAgCs7pxbtQ8KLCNC9J0-U4NueEgSK7h9c0dR3dUpN2sP_ebtUJnt7j8SPvI4RcA30EytVTxk1FgYHMT0gPhOQDRYfi9Jgn8pxchLCilEIMvEcmi6WN8sKHOprtJh-jyCyxLO3ms606Hxm3rpoa68JtsIy2Rep_81BZU3sXjKt2l-QsxzLYq5_YJ4vp82I8G8zfXl7Ho_nA8KGoByiZUiJlFgVYAwnNUVGVQQYIqTRUKGkYGJSZAkTKMRaWJrG0kPJcMd4n992z7Yi68sUa_U47LPRsNNf7GhWMKwF8C62962zl3VdjQ63XRTC2LHFjXRM0G8aSM2BStPT2H125xrc7HpRQiaTJvvlDp0y7dPA2P04AVO9vryd8_H64_bTFNx32wRzd39_wb90Gfqg</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Fischer, Taija L</creator><creator>Bödecker, Margarethe</creator><creator>Schweer, Sophie M</creator><creator>Dupont, Jennifer</creator><creator>Lepère, Valéria</creator><creator>Zehnacker-Rentien, Anne</creator><creator>Suhm, Martin A</creator><creator>Schröder, Benjamin</creator><creator>Henkes, Tobias</creator><creator>Andrada, Diego M</creator><creator>Balabin, Roman M</creator><creator>Singh, Haobam Kisan</creator><creator>Bhattacharyya, Himangshu Pratim</creator><creator>Sarma, Manabendra</creator><creator>Käser, Silvan</creator><creator>Töpfer, Kai</creator><creator>Vazquez-Salazar, Luis I</creator><creator>Boittier, Eric D</creator><creator>Meuwly, Markus</creator><creator>Mandelli, Giacomo</creator><creator>Lanzi, Cecilia</creator><creator>Conte, Riccardo</creator><creator>Ceotto, Michele</creator><creator>Dietrich, Fabian</creator><creator>Cisternas, Vicente</creator><creator>Gnanasekaran, Ramachandran</creator><creator>Hippler, Michael</creator><creator>Jarraya, Mahmoud</creator><creator>Hochlaf, Majdi</creator><creator>Viswanathan, Narasimhan</creator><creator>Nevolianis, Thomas</creator><creator>Rath, Gabriel</creator><creator>Kopp, Wassja A</creator><creator>Leonhard, Kai</creator><creator>Mata, Ricardo A</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6347-5108</orcidid><orcidid>https://orcid.org/0000-0002-3956-3922</orcidid><orcidid>https://orcid.org/0000-0001-9374-1809</orcidid><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid><orcidid>https://orcid.org/0000-0003-0657-629X</orcidid><orcidid>https://orcid.org/0000-0002-2578-4900</orcidid><orcidid>https://orcid.org/0000-0002-4650-9641</orcidid><orcidid>https://orcid.org/0000-0002-8270-3409</orcidid><orcidid>https://orcid.org/0000-0002-2720-3364</orcidid><orcidid>https://orcid.org/0000-0003-2050-3628</orcidid><orcidid>https://orcid.org/0000-0001-5540-0667</orcidid><orcidid>https://orcid.org/0000-0002-5200-2273</orcidid><orcidid>https://orcid.org/0000-0002-5141-871X</orcidid><orcidid>https://orcid.org/0000-0001-8147-3464</orcidid><orcidid>https://orcid.org/0000-0001-7930-8806</orcidid><orcidid>https://orcid.org/0000-0003-2515-7859</orcidid><orcidid>https://orcid.org/0000-0001-5813-5248</orcidid><orcidid>https://orcid.org/0000-0001-6231-6957</orcidid><orcidid>https://orcid.org/0000-0003-4478-5842</orcidid><orcidid>https://orcid.org/0000-0002-7924-8302</orcidid><orcidid>https://orcid.org/0000-0001-9861-7612</orcidid><orcidid>https://orcid.org/0000-0001-7633-9658</orcidid><orcidid>https://orcid.org/0000-0002-4016-2034</orcidid><orcidid>https://orcid.org/0000-0001-8841-7705</orcidid><orcidid>https://orcid.org/0000-0003-3026-3875</orcidid><orcidid>https://orcid.org/0000-0002-3641-8519</orcidid><orcidid>https://orcid.org/0000-0002-5883-3801</orcidid><orcidid>https://orcid.org/0000-0002-9611-1017</orcidid><orcidid>https://orcid.org/0000-0002-6035-4252</orcidid><orcidid>https://orcid.org/0000-0002-3827-0642</orcidid><orcidid>https://orcid.org/0000-0003-0369-3853</orcidid><orcidid>https://orcid.org/0000-0002-6410-7101</orcidid></search><sort><creationdate>20230823</creationdate><title>The first HyDRA challenge for computational vibrational spectroscopy</title><author>Fischer, Taija L ; Bödecker, Margarethe ; Schweer, Sophie M ; Dupont, Jennifer ; Lepère, Valéria ; Zehnacker-Rentien, Anne ; Suhm, Martin A ; Schröder, Benjamin ; Henkes, Tobias ; Andrada, Diego M ; Balabin, Roman M ; Singh, Haobam Kisan ; Bhattacharyya, Himangshu Pratim ; Sarma, Manabendra ; Käser, Silvan ; Töpfer, Kai ; Vazquez-Salazar, Luis I ; Boittier, Eric D ; Meuwly, Markus ; Mandelli, Giacomo ; Lanzi, Cecilia ; Conte, Riccardo ; Ceotto, Michele ; Dietrich, Fabian ; Cisternas, Vicente ; Gnanasekaran, Ramachandran ; Hippler, Michael ; Jarraya, Mahmoud ; Hochlaf, Majdi ; Viswanathan, Narasimhan ; Nevolianis, Thomas ; Rath, Gabriel ; Kopp, Wassja A ; Leonhard, Kai ; Mata, Ricardo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a62994b2ea41ec170fa909d1d1a1b6c0496c21ca6d91aa03a54e0756e1b3f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmarks</topic><topic>Chemical Sciences</topic><topic>Environmental effects</topic><topic>Low temperature</topic><topic>Machine learning</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Quantum chemistry</topic><topic>Quantum mechanics</topic><topic>Spectrum analysis</topic><topic>Tetrahydrofuran</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Taija L</creatorcontrib><creatorcontrib>Bödecker, Margarethe</creatorcontrib><creatorcontrib>Schweer, Sophie M</creatorcontrib><creatorcontrib>Dupont, Jennifer</creatorcontrib><creatorcontrib>Lepère, Valéria</creatorcontrib><creatorcontrib>Zehnacker-Rentien, Anne</creatorcontrib><creatorcontrib>Suhm, Martin A</creatorcontrib><creatorcontrib>Schröder, Benjamin</creatorcontrib><creatorcontrib>Henkes, Tobias</creatorcontrib><creatorcontrib>Andrada, Diego M</creatorcontrib><creatorcontrib>Balabin, Roman M</creatorcontrib><creatorcontrib>Singh, Haobam Kisan</creatorcontrib><creatorcontrib>Bhattacharyya, Himangshu Pratim</creatorcontrib><creatorcontrib>Sarma, Manabendra</creatorcontrib><creatorcontrib>Käser, Silvan</creatorcontrib><creatorcontrib>Töpfer, Kai</creatorcontrib><creatorcontrib>Vazquez-Salazar, Luis I</creatorcontrib><creatorcontrib>Boittier, Eric D</creatorcontrib><creatorcontrib>Meuwly, Markus</creatorcontrib><creatorcontrib>Mandelli, Giacomo</creatorcontrib><creatorcontrib>Lanzi, Cecilia</creatorcontrib><creatorcontrib>Conte, Riccardo</creatorcontrib><creatorcontrib>Ceotto, Michele</creatorcontrib><creatorcontrib>Dietrich, Fabian</creatorcontrib><creatorcontrib>Cisternas, Vicente</creatorcontrib><creatorcontrib>Gnanasekaran, Ramachandran</creatorcontrib><creatorcontrib>Hippler, Michael</creatorcontrib><creatorcontrib>Jarraya, Mahmoud</creatorcontrib><creatorcontrib>Hochlaf, Majdi</creatorcontrib><creatorcontrib>Viswanathan, Narasimhan</creatorcontrib><creatorcontrib>Nevolianis, Thomas</creatorcontrib><creatorcontrib>Rath, Gabriel</creatorcontrib><creatorcontrib>Kopp, Wassja A</creatorcontrib><creatorcontrib>Leonhard, Kai</creatorcontrib><creatorcontrib>Mata, Ricardo A</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Taija L</au><au>Bödecker, Margarethe</au><au>Schweer, Sophie M</au><au>Dupont, Jennifer</au><au>Lepère, Valéria</au><au>Zehnacker-Rentien, Anne</au><au>Suhm, Martin A</au><au>Schröder, Benjamin</au><au>Henkes, Tobias</au><au>Andrada, Diego M</au><au>Balabin, Roman M</au><au>Singh, Haobam Kisan</au><au>Bhattacharyya, Himangshu Pratim</au><au>Sarma, Manabendra</au><au>Käser, Silvan</au><au>Töpfer, Kai</au><au>Vazquez-Salazar, Luis I</au><au>Boittier, Eric D</au><au>Meuwly, Markus</au><au>Mandelli, Giacomo</au><au>Lanzi, Cecilia</au><au>Conte, Riccardo</au><au>Ceotto, Michele</au><au>Dietrich, Fabian</au><au>Cisternas, Vicente</au><au>Gnanasekaran, Ramachandran</au><au>Hippler, Michael</au><au>Jarraya, Mahmoud</au><au>Hochlaf, Majdi</au><au>Viswanathan, Narasimhan</au><au>Nevolianis, Thomas</au><au>Rath, Gabriel</au><au>Kopp, Wassja A</au><au>Leonhard, Kai</au><au>Mata, Ricardo A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The first HyDRA challenge for computational vibrational spectroscopy</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-08-23</date><risdate>2023</risdate><volume>25</volume><issue>33</issue><spage>2289</spage><epage>2212</epage><pages>2289-2212</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane- cis -1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies. A joint community effort to critically evaluate quantum chemical approaches to the prediction of vibrational shifts of hydrates in the gas phase.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp01216f</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6347-5108</orcidid><orcidid>https://orcid.org/0000-0002-3956-3922</orcidid><orcidid>https://orcid.org/0000-0001-9374-1809</orcidid><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid><orcidid>https://orcid.org/0000-0003-0657-629X</orcidid><orcidid>https://orcid.org/0000-0002-2578-4900</orcidid><orcidid>https://orcid.org/0000-0002-4650-9641</orcidid><orcidid>https://orcid.org/0000-0002-8270-3409</orcidid><orcidid>https://orcid.org/0000-0002-2720-3364</orcidid><orcidid>https://orcid.org/0000-0003-2050-3628</orcidid><orcidid>https://orcid.org/0000-0001-5540-0667</orcidid><orcidid>https://orcid.org/0000-0002-5200-2273</orcidid><orcidid>https://orcid.org/0000-0002-5141-871X</orcidid><orcidid>https://orcid.org/0000-0001-8147-3464</orcidid><orcidid>https://orcid.org/0000-0001-7930-8806</orcidid><orcidid>https://orcid.org/0000-0003-2515-7859</orcidid><orcidid>https://orcid.org/0000-0001-5813-5248</orcidid><orcidid>https://orcid.org/0000-0001-6231-6957</orcidid><orcidid>https://orcid.org/0000-0003-4478-5842</orcidid><orcidid>https://orcid.org/0000-0002-7924-8302</orcidid><orcidid>https://orcid.org/0000-0001-9861-7612</orcidid><orcidid>https://orcid.org/0000-0001-7633-9658</orcidid><orcidid>https://orcid.org/0000-0002-4016-2034</orcidid><orcidid>https://orcid.org/0000-0001-8841-7705</orcidid><orcidid>https://orcid.org/0000-0003-3026-3875</orcidid><orcidid>https://orcid.org/0000-0002-3641-8519</orcidid><orcidid>https://orcid.org/0000-0002-5883-3801</orcidid><orcidid>https://orcid.org/0000-0002-9611-1017</orcidid><orcidid>https://orcid.org/0000-0002-6035-4252</orcidid><orcidid>https://orcid.org/0000-0002-3827-0642</orcidid><orcidid>https://orcid.org/0000-0003-0369-3853</orcidid><orcidid>https://orcid.org/0000-0002-6410-7101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (33), p.2289-2212
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_journals_2854976072
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Benchmarks
Chemical Sciences
Environmental effects
Low temperature
Machine learning
or physical chemistry
Organic chemistry
Quantum chemistry
Quantum mechanics
Spectrum analysis
Tetrahydrofuran
Theoretical and
title The first HyDRA challenge for computational vibrational spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20first%20HyDRA%20challenge%20for%20computational%20vibrational%20spectroscopy&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Fischer,%20Taija%20L&rft.date=2023-08-23&rft.volume=25&rft.issue=33&rft.spage=2289&rft.epage=2212&rft.pages=2289-2212&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01216f&rft_dat=%3Cproquest_rsc_p%3E2854976072%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854976072&rft_id=info:pmid/&rfr_iscdi=true