Nanosecond Pulsed Laser‐Assisted Deposition to Construct a 3D Quasi‐Gradient Lithiophilic Skeleton for Stable Lithium Metal Anodes
The continuous growth of Li dendrites and volumetric deformation of Li severely impede the commercial application of Li metal anodes. To regulate Li stripping/plating, electrodeposition or magnetron sputtering is extensively utilized to fabricate lithiophilic‐metal deposited 3D Li hosts. However, th...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-08, Vol.33 (34), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 34 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Hui, Yu Wu, Yingbin Sun, Wenping Sun, Xudong Huang, Gang Na, Zhaolin |
description | The continuous growth of Li dendrites and volumetric deformation of Li severely impede the commercial application of Li metal anodes. To regulate Li stripping/plating, electrodeposition or magnetron sputtering is extensively utilized to fabricate lithiophilic‐metal deposited 3D Li hosts. However, the binding force between lithiophilic‐metal and host is weak, inevitably leading to numerous cracks/defects of lithiophilic‐surface‐layer during Li plating/stripping. Herein, a quasi‐gradient (Cu‐Cu3Sn‐Sn‐SnO2) 3D skeleton consisting of hierarchical Sn/SnO2 composite metallurgically bonded to copper foam through Cu3Sn alloy (LAD‐SSC@CF) is designed, and prepared in one‐step by a nanosecond‐pulsed‐laser‐assisted deposition strategy. The homogeneous Li nucleation sites provided by Li22Sn5 formed by the reaction of Sn/SnO2 with Li can inhibit Li dendrites growth. Meanwhile, the porous space and strong bonding of Cu3Sn layer avoid structural deterioration of anodes. Consequently, a symmetric cell based on LAD‐SSC@CF@Li exhibits an outstanding cycling stability of 1500 h at 1 mA cm−2. In particular, a full cell with LiFePO4 cathode provides good capacity retention of 81.3% at 5 C after 600 cycles. Moreover, the successful preparation of other composite materials (In, Zn, Sn‐Bi, etc.) loading on various substrates (Kapton film, ceramic, copper foil, etc.) demonstrates the versatility of pulsed‐laser‐assisted deposition strategy for preparing battery materials.
A stable quasi‐gradient (Cu‐Cu3Sn‐Sn‐SnO2) 3D skeleton consisting of a Sn/SnO2 layer metallurgically bonded to copper foam through Cu3Sn alloy is designed in one‐step by a nanosecond pulsed laser‐assisted deposition strategy (LAD‐SSC@CF). The Li22Sn5 lipophilic site created during the pre‐lithiation process and porous space of 3D skeleton enable LAD‐SSC@CF as an effective lithium host promoting homogeneous plating/stripping of lithium. |
doi_str_mv | 10.1002/adfm.202303319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2854973593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854973593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-4ac70c51a886f437e8d9db91cd77815863197896c70f270e11defe99bc8861073</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPrclmu9kcS6tV2PpBFbwtaTJLU7ebmmSR3jx59jf6S0yp1KOnGYbnmWFehM4p6VNCkkupq1U_IQkjjFFxgDo0o1mPkSQ_3Pf05RideL8khHLO0g76vJON9aBso_FDW3vQuJAe3PfH19B740McjGFtvQnGNjhYPLKND65VAUvMxvixld5EeuKkNtAEXJiwMHa9MLVRePYKNYQoVtbhWZDzGnZAu8JTCLLGw8Zq8KfoqJLx-tlv7aLn66un0U2vuJ_cjoZFTzHKRS-VihM1oDLPsyplHHIt9FxQpTnP6SDP4uM8F1mkqoQToFRDBULMVRQo4ayLLnZ7186-teBDubSta-LJMskHqeBsIFik-jtKOeu9g6pcO7OSblNSUm6zLrdZl_usoyB2wrupYfMPXQ7H19M_9wfLW4W3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854973593</pqid></control><display><type>article</type><title>Nanosecond Pulsed Laser‐Assisted Deposition to Construct a 3D Quasi‐Gradient Lithiophilic Skeleton for Stable Lithium Metal Anodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hui, Yu ; Wu, Yingbin ; Sun, Wenping ; Sun, Xudong ; Huang, Gang ; Na, Zhaolin</creator><creatorcontrib>Hui, Yu ; Wu, Yingbin ; Sun, Wenping ; Sun, Xudong ; Huang, Gang ; Na, Zhaolin</creatorcontrib><description>The continuous growth of Li dendrites and volumetric deformation of Li severely impede the commercial application of Li metal anodes. To regulate Li stripping/plating, electrodeposition or magnetron sputtering is extensively utilized to fabricate lithiophilic‐metal deposited 3D Li hosts. However, the binding force between lithiophilic‐metal and host is weak, inevitably leading to numerous cracks/defects of lithiophilic‐surface‐layer during Li plating/stripping. Herein, a quasi‐gradient (Cu‐Cu3Sn‐Sn‐SnO2) 3D skeleton consisting of hierarchical Sn/SnO2 composite metallurgically bonded to copper foam through Cu3Sn alloy (LAD‐SSC@CF) is designed, and prepared in one‐step by a nanosecond‐pulsed‐laser‐assisted deposition strategy. The homogeneous Li nucleation sites provided by Li22Sn5 formed by the reaction of Sn/SnO2 with Li can inhibit Li dendrites growth. Meanwhile, the porous space and strong bonding of Cu3Sn layer avoid structural deterioration of anodes. Consequently, a symmetric cell based on LAD‐SSC@CF@Li exhibits an outstanding cycling stability of 1500 h at 1 mA cm−2. In particular, a full cell with LiFePO4 cathode provides good capacity retention of 81.3% at 5 C after 600 cycles. Moreover, the successful preparation of other composite materials (In, Zn, Sn‐Bi, etc.) loading on various substrates (Kapton film, ceramic, copper foil, etc.) demonstrates the versatility of pulsed‐laser‐assisted deposition strategy for preparing battery materials.
A stable quasi‐gradient (Cu‐Cu3Sn‐Sn‐SnO2) 3D skeleton consisting of a Sn/SnO2 layer metallurgically bonded to copper foam through Cu3Sn alloy is designed in one‐step by a nanosecond pulsed laser‐assisted deposition strategy (LAD‐SSC@CF). The Li22Sn5 lipophilic site created during the pre‐lithiation process and porous space of 3D skeleton enable LAD‐SSC@CF as an effective lithium host promoting homogeneous plating/stripping of lithium.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202303319</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D Li hosts ; Anodes ; Bonding strength ; Composite materials ; Copper ; Electrodeposition ; Kapton (trademark) ; Lasers ; laser‐assisted deposition ; Li dendrites ; Lithium ; Magnetron sputtering ; Materials science ; Metal foams ; Metal foils ; metallurgically bonded ; Nanosecond pulses ; Nucleation ; Plating ; Polyimide resins ; Pulsed lasers ; Quasi‐gradient 3D skeleton ; Substrates ; Tin dioxide</subject><ispartof>Advanced functional materials, 2023-08, Vol.33 (34), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-4ac70c51a886f437e8d9db91cd77815863197896c70f270e11defe99bc8861073</citedby><cites>FETCH-LOGICAL-c3179-4ac70c51a886f437e8d9db91cd77815863197896c70f270e11defe99bc8861073</cites><orcidid>0000-0003-4014-0895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202303319$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202303319$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hui, Yu</creatorcontrib><creatorcontrib>Wu, Yingbin</creatorcontrib><creatorcontrib>Sun, Wenping</creatorcontrib><creatorcontrib>Sun, Xudong</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Na, Zhaolin</creatorcontrib><title>Nanosecond Pulsed Laser‐Assisted Deposition to Construct a 3D Quasi‐Gradient Lithiophilic Skeleton for Stable Lithium Metal Anodes</title><title>Advanced functional materials</title><description>The continuous growth of Li dendrites and volumetric deformation of Li severely impede the commercial application of Li metal anodes. To regulate Li stripping/plating, electrodeposition or magnetron sputtering is extensively utilized to fabricate lithiophilic‐metal deposited 3D Li hosts. However, the binding force between lithiophilic‐metal and host is weak, inevitably leading to numerous cracks/defects of lithiophilic‐surface‐layer during Li plating/stripping. Herein, a quasi‐gradient (Cu‐Cu3Sn‐Sn‐SnO2) 3D skeleton consisting of hierarchical Sn/SnO2 composite metallurgically bonded to copper foam through Cu3Sn alloy (LAD‐SSC@CF) is designed, and prepared in one‐step by a nanosecond‐pulsed‐laser‐assisted deposition strategy. The homogeneous Li nucleation sites provided by Li22Sn5 formed by the reaction of Sn/SnO2 with Li can inhibit Li dendrites growth. Meanwhile, the porous space and strong bonding of Cu3Sn layer avoid structural deterioration of anodes. Consequently, a symmetric cell based on LAD‐SSC@CF@Li exhibits an outstanding cycling stability of 1500 h at 1 mA cm−2. In particular, a full cell with LiFePO4 cathode provides good capacity retention of 81.3% at 5 C after 600 cycles. Moreover, the successful preparation of other composite materials (In, Zn, Sn‐Bi, etc.) loading on various substrates (Kapton film, ceramic, copper foil, etc.) demonstrates the versatility of pulsed‐laser‐assisted deposition strategy for preparing battery materials.
A stable quasi‐gradient (Cu‐Cu3Sn‐Sn‐SnO2) 3D skeleton consisting of a Sn/SnO2 layer metallurgically bonded to copper foam through Cu3Sn alloy is designed in one‐step by a nanosecond pulsed laser‐assisted deposition strategy (LAD‐SSC@CF). The Li22Sn5 lipophilic site created during the pre‐lithiation process and porous space of 3D skeleton enable LAD‐SSC@CF as an effective lithium host promoting homogeneous plating/stripping of lithium.</description><subject>3D Li hosts</subject><subject>Anodes</subject><subject>Bonding strength</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Electrodeposition</subject><subject>Kapton (trademark)</subject><subject>Lasers</subject><subject>laser‐assisted deposition</subject><subject>Li dendrites</subject><subject>Lithium</subject><subject>Magnetron sputtering</subject><subject>Materials science</subject><subject>Metal foams</subject><subject>Metal foils</subject><subject>metallurgically bonded</subject><subject>Nanosecond pulses</subject><subject>Nucleation</subject><subject>Plating</subject><subject>Polyimide resins</subject><subject>Pulsed lasers</subject><subject>Quasi‐gradient 3D skeleton</subject><subject>Substrates</subject><subject>Tin dioxide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwHPrclmu9kcS6tV2PpBFbwtaTJLU7ebmmSR3jx59jf6S0yp1KOnGYbnmWFehM4p6VNCkkupq1U_IQkjjFFxgDo0o1mPkSQ_3Pf05RideL8khHLO0g76vJON9aBso_FDW3vQuJAe3PfH19B740McjGFtvQnGNjhYPLKND65VAUvMxvixld5EeuKkNtAEXJiwMHa9MLVRePYKNYQoVtbhWZDzGnZAu8JTCLLGw8Zq8KfoqJLx-tlv7aLn66un0U2vuJ_cjoZFTzHKRS-VihM1oDLPsyplHHIt9FxQpTnP6SDP4uM8F1mkqoQToFRDBULMVRQo4ayLLnZ7186-teBDubSta-LJMskHqeBsIFik-jtKOeu9g6pcO7OSblNSUm6zLrdZl_usoyB2wrupYfMPXQ7H19M_9wfLW4W3</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Hui, Yu</creator><creator>Wu, Yingbin</creator><creator>Sun, Wenping</creator><creator>Sun, Xudong</creator><creator>Huang, Gang</creator><creator>Na, Zhaolin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4014-0895</orcidid></search><sort><creationdate>20230801</creationdate><title>Nanosecond Pulsed Laser‐Assisted Deposition to Construct a 3D Quasi‐Gradient Lithiophilic Skeleton for Stable Lithium Metal Anodes</title><author>Hui, Yu ; Wu, Yingbin ; Sun, Wenping ; Sun, Xudong ; Huang, Gang ; Na, Zhaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-4ac70c51a886f437e8d9db91cd77815863197896c70f270e11defe99bc8861073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D Li hosts</topic><topic>Anodes</topic><topic>Bonding strength</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Electrodeposition</topic><topic>Kapton (trademark)</topic><topic>Lasers</topic><topic>laser‐assisted deposition</topic><topic>Li dendrites</topic><topic>Lithium</topic><topic>Magnetron sputtering</topic><topic>Materials science</topic><topic>Metal foams</topic><topic>Metal foils</topic><topic>metallurgically bonded</topic><topic>Nanosecond pulses</topic><topic>Nucleation</topic><topic>Plating</topic><topic>Polyimide resins</topic><topic>Pulsed lasers</topic><topic>Quasi‐gradient 3D skeleton</topic><topic>Substrates</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Yu</creatorcontrib><creatorcontrib>Wu, Yingbin</creatorcontrib><creatorcontrib>Sun, Wenping</creatorcontrib><creatorcontrib>Sun, Xudong</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><creatorcontrib>Na, Zhaolin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Yu</au><au>Wu, Yingbin</au><au>Sun, Wenping</au><au>Sun, Xudong</au><au>Huang, Gang</au><au>Na, Zhaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanosecond Pulsed Laser‐Assisted Deposition to Construct a 3D Quasi‐Gradient Lithiophilic Skeleton for Stable Lithium Metal Anodes</atitle><jtitle>Advanced functional materials</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>34</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The continuous growth of Li dendrites and volumetric deformation of Li severely impede the commercial application of Li metal anodes. To regulate Li stripping/plating, electrodeposition or magnetron sputtering is extensively utilized to fabricate lithiophilic‐metal deposited 3D Li hosts. However, the binding force between lithiophilic‐metal and host is weak, inevitably leading to numerous cracks/defects of lithiophilic‐surface‐layer during Li plating/stripping. Herein, a quasi‐gradient (Cu‐Cu3Sn‐Sn‐SnO2) 3D skeleton consisting of hierarchical Sn/SnO2 composite metallurgically bonded to copper foam through Cu3Sn alloy (LAD‐SSC@CF) is designed, and prepared in one‐step by a nanosecond‐pulsed‐laser‐assisted deposition strategy. The homogeneous Li nucleation sites provided by Li22Sn5 formed by the reaction of Sn/SnO2 with Li can inhibit Li dendrites growth. Meanwhile, the porous space and strong bonding of Cu3Sn layer avoid structural deterioration of anodes. Consequently, a symmetric cell based on LAD‐SSC@CF@Li exhibits an outstanding cycling stability of 1500 h at 1 mA cm−2. In particular, a full cell with LiFePO4 cathode provides good capacity retention of 81.3% at 5 C after 600 cycles. Moreover, the successful preparation of other composite materials (In, Zn, Sn‐Bi, etc.) loading on various substrates (Kapton film, ceramic, copper foil, etc.) demonstrates the versatility of pulsed‐laser‐assisted deposition strategy for preparing battery materials.
A stable quasi‐gradient (Cu‐Cu3Sn‐Sn‐SnO2) 3D skeleton consisting of a Sn/SnO2 layer metallurgically bonded to copper foam through Cu3Sn alloy is designed in one‐step by a nanosecond pulsed laser‐assisted deposition strategy (LAD‐SSC@CF). The Li22Sn5 lipophilic site created during the pre‐lithiation process and porous space of 3D skeleton enable LAD‐SSC@CF as an effective lithium host promoting homogeneous plating/stripping of lithium.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202303319</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4014-0895</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-08, Vol.33 (34), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2854973593 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 3D Li hosts Anodes Bonding strength Composite materials Copper Electrodeposition Kapton (trademark) Lasers laser‐assisted deposition Li dendrites Lithium Magnetron sputtering Materials science Metal foams Metal foils metallurgically bonded Nanosecond pulses Nucleation Plating Polyimide resins Pulsed lasers Quasi‐gradient 3D skeleton Substrates Tin dioxide |
title | Nanosecond Pulsed Laser‐Assisted Deposition to Construct a 3D Quasi‐Gradient Lithiophilic Skeleton for Stable Lithium Metal Anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanosecond%20Pulsed%20Laser%E2%80%90Assisted%20Deposition%20to%20Construct%20a%203D%20Quasi%E2%80%90Gradient%20Lithiophilic%20Skeleton%20for%20Stable%20Lithium%20Metal%20Anodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Hui,%20Yu&rft.date=2023-08-01&rft.volume=33&rft.issue=34&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202303319&rft_dat=%3Cproquest_cross%3E2854973593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854973593&rft_id=info:pmid/&rfr_iscdi=true |