Essential dimension of symmetric groups in prime characteristic
The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Edens, Oakley Reichstein, Zinovy |
description | The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension was formally defined. We now know that \(\operatorname{ed}_k({\rm S}_n)\) lies between \(\lfloor n/2 \rfloor\) and \(n-3\) for every \(n \geqslant 5\) and every field \(k\) of characteristic different from \(2\). Moreover, if \(\operatorname{char}(k) = 0\), then \(\operatorname{ed}_k({\rm S}_n) \geqslant \lfloor (n+1)/2 \rfloor\) for any \(n \geqslant 6\). The value of \(\operatorname{ed}_k({\rm S}_n)\) is not known for any \(n \geqslant 8\) and any field \(k\), though it is widely believed that \(\operatorname{ed}_k({\rm S}_n)\) should be \(n-3\) for every \(n \geqslant 5\), at least in characteristic \(0\). In this paper we show that for every odd prime \(p\) there are infinitely many positive integers \(n\) such that \(\operatorname{ed}_{\mathbb F_p}(\rm{S}_n) \leqslant n-4\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2854681794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854681794</sourcerecordid><originalsourceid>FETCH-proquest_journals_28546817943</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQZcF9ok_XHlQioewH0JMdUpbVJn0oW3twsP4Oot3rcRiVSqyBot5U6kzEOe57KqZVmqRJxbZucjmhEeODnPGDyEHvgzTS4SWnhSWGYG9DDTKsC-DBkbHSFHtAex7c3ILv11L47X9n65ZTOF9-I4dkNYyK-rk02pq6aoT1r9p75ZOTmN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854681794</pqid></control><display><type>article</type><title>Essential dimension of symmetric groups in prime characteristic</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Edens, Oakley ; Reichstein, Zinovy</creator><creatorcontrib>Edens, Oakley ; Reichstein, Zinovy</creatorcontrib><description>The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension was formally defined. We now know that \(\operatorname{ed}_k({\rm S}_n)\) lies between \(\lfloor n/2 \rfloor\) and \(n-3\) for every \(n \geqslant 5\) and every field \(k\) of characteristic different from \(2\). Moreover, if \(\operatorname{char}(k) = 0\), then \(\operatorname{ed}_k({\rm S}_n) \geqslant \lfloor (n+1)/2 \rfloor\) for any \(n \geqslant 6\). The value of \(\operatorname{ed}_k({\rm S}_n)\) is not known for any \(n \geqslant 8\) and any field \(k\), though it is widely believed that \(\operatorname{ed}_k({\rm S}_n)\) should be \(n-3\) for every \(n \geqslant 5\), at least in characteristic \(0\). In this paper we show that for every odd prime \(p\) there are infinitely many positive integers \(n\) such that \(\operatorname{ed}_{\mathbb F_p}(\rm{S}_n) \leqslant n-4\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Polynomials</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Edens, Oakley</creatorcontrib><creatorcontrib>Reichstein, Zinovy</creatorcontrib><title>Essential dimension of symmetric groups in prime characteristic</title><title>arXiv.org</title><description>The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension was formally defined. We now know that \(\operatorname{ed}_k({\rm S}_n)\) lies between \(\lfloor n/2 \rfloor\) and \(n-3\) for every \(n \geqslant 5\) and every field \(k\) of characteristic different from \(2\). Moreover, if \(\operatorname{char}(k) = 0\), then \(\operatorname{ed}_k({\rm S}_n) \geqslant \lfloor (n+1)/2 \rfloor\) for any \(n \geqslant 6\). The value of \(\operatorname{ed}_k({\rm S}_n)\) is not known for any \(n \geqslant 8\) and any field \(k\), though it is widely believed that \(\operatorname{ed}_k({\rm S}_n)\) should be \(n-3\) for every \(n \geqslant 5\), at least in characteristic \(0\). In this paper we show that for every odd prime \(p\) there are infinitely many positive integers \(n\) such that \(\operatorname{ed}_{\mathbb F_p}(\rm{S}_n) \leqslant n-4\).</description><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQZcF9ok_XHlQioewH0JMdUpbVJn0oW3twsP4Oot3rcRiVSqyBot5U6kzEOe57KqZVmqRJxbZucjmhEeODnPGDyEHvgzTS4SWnhSWGYG9DDTKsC-DBkbHSFHtAex7c3ILv11L47X9n65ZTOF9-I4dkNYyK-rk02pq6aoT1r9p75ZOTmN</recordid><startdate>20230819</startdate><enddate>20230819</enddate><creator>Edens, Oakley</creator><creator>Reichstein, Zinovy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230819</creationdate><title>Essential dimension of symmetric groups in prime characteristic</title><author>Edens, Oakley ; Reichstein, Zinovy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28546817943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Edens, Oakley</creatorcontrib><creatorcontrib>Reichstein, Zinovy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edens, Oakley</au><au>Reichstein, Zinovy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Essential dimension of symmetric groups in prime characteristic</atitle><jtitle>arXiv.org</jtitle><date>2023-08-19</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension was formally defined. We now know that \(\operatorname{ed}_k({\rm S}_n)\) lies between \(\lfloor n/2 \rfloor\) and \(n-3\) for every \(n \geqslant 5\) and every field \(k\) of characteristic different from \(2\). Moreover, if \(\operatorname{char}(k) = 0\), then \(\operatorname{ed}_k({\rm S}_n) \geqslant \lfloor (n+1)/2 \rfloor\) for any \(n \geqslant 6\). The value of \(\operatorname{ed}_k({\rm S}_n)\) is not known for any \(n \geqslant 8\) and any field \(k\), though it is widely believed that \(\operatorname{ed}_k({\rm S}_n)\) should be \(n-3\) for every \(n \geqslant 5\), at least in characteristic \(0\). In this paper we show that for every odd prime \(p\) there are infinitely many positive integers \(n\) such that \(\operatorname{ed}_{\mathbb F_p}(\rm{S}_n) \leqslant n-4\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2854681794 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Polynomials |
title | Essential dimension of symmetric groups in prime characteristic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Essential%20dimension%20of%20symmetric%20groups%20in%20prime%20characteristic&rft.jtitle=arXiv.org&rft.au=Edens,%20Oakley&rft.date=2023-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2854681794%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854681794&rft_id=info:pmid/&rfr_iscdi=true |