Essential dimension of symmetric groups in prime characteristic

The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Edens, Oakley, Reichstein, Zinovy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Edens, Oakley
Reichstein, Zinovy
description The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension was formally defined. We now know that \(\operatorname{ed}_k({\rm S}_n)\) lies between \(\lfloor n/2 \rfloor\) and \(n-3\) for every \(n \geqslant 5\) and every field \(k\) of characteristic different from \(2\). Moreover, if \(\operatorname{char}(k) = 0\), then \(\operatorname{ed}_k({\rm S}_n) \geqslant \lfloor (n+1)/2 \rfloor\) for any \(n \geqslant 6\). The value of \(\operatorname{ed}_k({\rm S}_n)\) is not known for any \(n \geqslant 8\) and any field \(k\), though it is widely believed that \(\operatorname{ed}_k({\rm S}_n)\) should be \(n-3\) for every \(n \geqslant 5\), at least in characteristic \(0\). In this paper we show that for every odd prime \(p\) there are infinitely many positive integers \(n\) such that \(\operatorname{ed}_{\mathbb F_p}(\rm{S}_n) \leqslant n-4\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2854681794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854681794</sourcerecordid><originalsourceid>FETCH-proquest_journals_28546817943</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQZcF9ok_XHlQioewH0JMdUpbVJn0oW3twsP4Oot3rcRiVSqyBot5U6kzEOe57KqZVmqRJxbZucjmhEeODnPGDyEHvgzTS4SWnhSWGYG9DDTKsC-DBkbHSFHtAex7c3ILv11L47X9n65ZTOF9-I4dkNYyK-rk02pq6aoT1r9p75ZOTmN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854681794</pqid></control><display><type>article</type><title>Essential dimension of symmetric groups in prime characteristic</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Edens, Oakley ; Reichstein, Zinovy</creator><creatorcontrib>Edens, Oakley ; Reichstein, Zinovy</creatorcontrib><description>The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension was formally defined. We now know that \(\operatorname{ed}_k({\rm S}_n)\) lies between \(\lfloor n/2 \rfloor\) and \(n-3\) for every \(n \geqslant 5\) and every field \(k\) of characteristic different from \(2\). Moreover, if \(\operatorname{char}(k) = 0\), then \(\operatorname{ed}_k({\rm S}_n) \geqslant \lfloor (n+1)/2 \rfloor\) for any \(n \geqslant 6\). The value of \(\operatorname{ed}_k({\rm S}_n)\) is not known for any \(n \geqslant 8\) and any field \(k\), though it is widely believed that \(\operatorname{ed}_k({\rm S}_n)\) should be \(n-3\) for every \(n \geqslant 5\), at least in characteristic \(0\). In this paper we show that for every odd prime \(p\) there are infinitely many positive integers \(n\) such that \(\operatorname{ed}_{\mathbb F_p}(\rm{S}_n) \leqslant n-4\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Polynomials</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Edens, Oakley</creatorcontrib><creatorcontrib>Reichstein, Zinovy</creatorcontrib><title>Essential dimension of symmetric groups in prime characteristic</title><title>arXiv.org</title><description>The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension was formally defined. We now know that \(\operatorname{ed}_k({\rm S}_n)\) lies between \(\lfloor n/2 \rfloor\) and \(n-3\) for every \(n \geqslant 5\) and every field \(k\) of characteristic different from \(2\). Moreover, if \(\operatorname{char}(k) = 0\), then \(\operatorname{ed}_k({\rm S}_n) \geqslant \lfloor (n+1)/2 \rfloor\) for any \(n \geqslant 6\). The value of \(\operatorname{ed}_k({\rm S}_n)\) is not known for any \(n \geqslant 8\) and any field \(k\), though it is widely believed that \(\operatorname{ed}_k({\rm S}_n)\) should be \(n-3\) for every \(n \geqslant 5\), at least in characteristic \(0\). In this paper we show that for every odd prime \(p\) there are infinitely many positive integers \(n\) such that \(\operatorname{ed}_{\mathbb F_p}(\rm{S}_n) \leqslant n-4\).</description><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQZcF9ok_XHlQioewH0JMdUpbVJn0oW3twsP4Oot3rcRiVSqyBot5U6kzEOe57KqZVmqRJxbZucjmhEeODnPGDyEHvgzTS4SWnhSWGYG9DDTKsC-DBkbHSFHtAex7c3ILv11L47X9n65ZTOF9-I4dkNYyK-rk02pq6aoT1r9p75ZOTmN</recordid><startdate>20230819</startdate><enddate>20230819</enddate><creator>Edens, Oakley</creator><creator>Reichstein, Zinovy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230819</creationdate><title>Essential dimension of symmetric groups in prime characteristic</title><author>Edens, Oakley ; Reichstein, Zinovy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28546817943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Edens, Oakley</creatorcontrib><creatorcontrib>Reichstein, Zinovy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edens, Oakley</au><au>Reichstein, Zinovy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Essential dimension of symmetric groups in prime characteristic</atitle><jtitle>arXiv.org</jtitle><date>2023-08-19</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The essential dimension \(\operatorname{ed}_k({\rm S}_n)\) of the symmetric group \({\rm S}_n\) is the minimal integer \(d\) such that the general polynomial \(x^n + a_1 x^{n-1} + \ldots + a_n\) can be reduced to a \(d\)-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension was formally defined. We now know that \(\operatorname{ed}_k({\rm S}_n)\) lies between \(\lfloor n/2 \rfloor\) and \(n-3\) for every \(n \geqslant 5\) and every field \(k\) of characteristic different from \(2\). Moreover, if \(\operatorname{char}(k) = 0\), then \(\operatorname{ed}_k({\rm S}_n) \geqslant \lfloor (n+1)/2 \rfloor\) for any \(n \geqslant 6\). The value of \(\operatorname{ed}_k({\rm S}_n)\) is not known for any \(n \geqslant 8\) and any field \(k\), though it is widely believed that \(\operatorname{ed}_k({\rm S}_n)\) should be \(n-3\) for every \(n \geqslant 5\), at least in characteristic \(0\). In this paper we show that for every odd prime \(p\) there are infinitely many positive integers \(n\) such that \(\operatorname{ed}_{\mathbb F_p}(\rm{S}_n) \leqslant n-4\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2854681794
source Open Access: Freely Accessible Journals by multiple vendors
subjects Polynomials
title Essential dimension of symmetric groups in prime characteristic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Essential%20dimension%20of%20symmetric%20groups%20in%20prime%20characteristic&rft.jtitle=arXiv.org&rft.au=Edens,%20Oakley&rft.date=2023-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2854681794%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854681794&rft_id=info:pmid/&rfr_iscdi=true