Iron‐based shape memory alloy active assembly connectors for civil structures

The lack of suitable connectors for thin‐walled carbon concrete elements with their known resource and material saving properties still represents a major obstacle for practical application. On top, the on‐site installation remains a labor‐intensive task. To overcome this limitation, we report the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural concrete : journal of the FIB 2023-08, Vol.24 (4), p.5184-5196
Hauptverfasser: Thüsing, Kai, Sobotta, Sacha, Schlüter, Dominik, Hoinka, Jennifer, Ayoubi, Mazen, Kropp, Thomas, Schumann, Alexander, Drossel, Welf‐Guntram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5196
container_issue 4
container_start_page 5184
container_title Structural concrete : journal of the FIB
container_volume 24
creator Thüsing, Kai
Sobotta, Sacha
Schlüter, Dominik
Hoinka, Jennifer
Ayoubi, Mazen
Kropp, Thomas
Schumann, Alexander
Drossel, Welf‐Guntram
description The lack of suitable connectors for thin‐walled carbon concrete elements with their known resource and material saving properties still represents a major obstacle for practical application. On top, the on‐site installation remains a labor‐intensive task. To overcome this limitation, we report the development of an active assembly connector that enables simple and safe installation of carbon concrete façade elements and increases assembly efficiency. Moreover, the active assembly features permit an assembly without physical access to the connector, called blind assembly. Its concept is based on the recovery expansion of iron‐based shape memory alloys (Fe‐SMA). This paper presents material characteristics such as recovery stress and strain of the Fe‐SMA in compression. The connector concept uses an anchor rail that blocks the recovery extraction of a Fe‐SMA‐fastener to produce a stable, frictional and linear connection. Tensile tests show the impact of design parameters and high pull‐out forces with sufficient design. Also, ongoing long term tensile tests show small creep, so far. The anchor channels integrate well with carbon concrete façade panels. The heating concept with heating cartridges works well, even under cold winter conditions. Wind test results exceed requirements. Finally, a field test shows excellent installation results and proves the ease of assembly as well as the ability for blind assembly.
doi_str_mv 10.1002/suco.202200418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2854673368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854673368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3128-4b44cb658647a5888c17062ec8d57c256a4d30cb4bc25186d772de86d11dc8193</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU5NM_rqU4k-hMAvtOmTupDhlZlKTmcrsfASf0ScxpaJLN_ecC9-5Fw5C15TMKCHsNg7gZ4wwRgin-gRNqBI0U5Lr0-S55BmnSp2jixi3iU9eTFCxDL77-vgsbXQVjq9253DrWh9GbJvGpwl9vXfYxujashkx-K5z0PsQ8cYHDPW-bnDswwD9EFy8RGcb20R39aNTtH64f1k8Zavicbm4W2WQU6YzXnIOpRRacmWF1hqoIpI50JVQwIS0vMoJlLxMC9WyUopVLimlFWg6z6fo5nh3F_zb4GJvtn4IXXppmBZcqjyXOlGzIwXBxxjcxuxC3dowGkrMoTRzKM38lpYC82PgvW7c-A9tnteL4i_7DcOwchI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854673368</pqid></control><display><type>article</type><title>Iron‐based shape memory alloy active assembly connectors for civil structures</title><source>Wiley Online Library All Journals</source><creator>Thüsing, Kai ; Sobotta, Sacha ; Schlüter, Dominik ; Hoinka, Jennifer ; Ayoubi, Mazen ; Kropp, Thomas ; Schumann, Alexander ; Drossel, Welf‐Guntram</creator><creatorcontrib>Thüsing, Kai ; Sobotta, Sacha ; Schlüter, Dominik ; Hoinka, Jennifer ; Ayoubi, Mazen ; Kropp, Thomas ; Schumann, Alexander ; Drossel, Welf‐Guntram</creatorcontrib><description>The lack of suitable connectors for thin‐walled carbon concrete elements with their known resource and material saving properties still represents a major obstacle for practical application. On top, the on‐site installation remains a labor‐intensive task. To overcome this limitation, we report the development of an active assembly connector that enables simple and safe installation of carbon concrete façade elements and increases assembly efficiency. Moreover, the active assembly features permit an assembly without physical access to the connector, called blind assembly. Its concept is based on the recovery expansion of iron‐based shape memory alloys (Fe‐SMA). This paper presents material characteristics such as recovery stress and strain of the Fe‐SMA in compression. The connector concept uses an anchor rail that blocks the recovery extraction of a Fe‐SMA‐fastener to produce a stable, frictional and linear connection. Tensile tests show the impact of design parameters and high pull‐out forces with sufficient design. Also, ongoing long term tensile tests show small creep, so far. The anchor channels integrate well with carbon concrete façade panels. The heating concept with heating cartridges works well, even under cold winter conditions. Wind test results exceed requirements. Finally, a field test shows excellent installation results and proves the ease of assembly as well as the ability for blind assembly.</description><identifier>ISSN: 1464-4177</identifier><identifier>EISSN: 1751-7648</identifier><identifier>DOI: 10.1002/suco.202200418</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>active assembly ; Assembly ; Carbon ; carbon reinforced concrete ; Connectors ; Design parameters ; Facades ; façade panels ; Field tests ; Heating ; Iron ; iron‐based shape memory alloy ; Shape memory alloys ; Tensile tests</subject><ispartof>Structural concrete : journal of the FIB, 2023-08, Vol.24 (4), p.5184-5196</ispartof><rights>2023 The Authors. Structural Concrete published by John Wiley &amp; Sons Ltd on behalf of International Federation for Structural Concrete</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3128-4b44cb658647a5888c17062ec8d57c256a4d30cb4bc25186d772de86d11dc8193</cites><orcidid>0000-0002-2872-994X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsuco.202200418$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsuco.202200418$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Thüsing, Kai</creatorcontrib><creatorcontrib>Sobotta, Sacha</creatorcontrib><creatorcontrib>Schlüter, Dominik</creatorcontrib><creatorcontrib>Hoinka, Jennifer</creatorcontrib><creatorcontrib>Ayoubi, Mazen</creatorcontrib><creatorcontrib>Kropp, Thomas</creatorcontrib><creatorcontrib>Schumann, Alexander</creatorcontrib><creatorcontrib>Drossel, Welf‐Guntram</creatorcontrib><title>Iron‐based shape memory alloy active assembly connectors for civil structures</title><title>Structural concrete : journal of the FIB</title><description>The lack of suitable connectors for thin‐walled carbon concrete elements with their known resource and material saving properties still represents a major obstacle for practical application. On top, the on‐site installation remains a labor‐intensive task. To overcome this limitation, we report the development of an active assembly connector that enables simple and safe installation of carbon concrete façade elements and increases assembly efficiency. Moreover, the active assembly features permit an assembly without physical access to the connector, called blind assembly. Its concept is based on the recovery expansion of iron‐based shape memory alloys (Fe‐SMA). This paper presents material characteristics such as recovery stress and strain of the Fe‐SMA in compression. The connector concept uses an anchor rail that blocks the recovery extraction of a Fe‐SMA‐fastener to produce a stable, frictional and linear connection. Tensile tests show the impact of design parameters and high pull‐out forces with sufficient design. Also, ongoing long term tensile tests show small creep, so far. The anchor channels integrate well with carbon concrete façade panels. The heating concept with heating cartridges works well, even under cold winter conditions. Wind test results exceed requirements. Finally, a field test shows excellent installation results and proves the ease of assembly as well as the ability for blind assembly.</description><subject>active assembly</subject><subject>Assembly</subject><subject>Carbon</subject><subject>carbon reinforced concrete</subject><subject>Connectors</subject><subject>Design parameters</subject><subject>Facades</subject><subject>façade panels</subject><subject>Field tests</subject><subject>Heating</subject><subject>Iron</subject><subject>iron‐based shape memory alloy</subject><subject>Shape memory alloys</subject><subject>Tensile tests</subject><issn>1464-4177</issn><issn>1751-7648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU5NM_rqU4k-hMAvtOmTupDhlZlKTmcrsfASf0ScxpaJLN_ecC9-5Fw5C15TMKCHsNg7gZ4wwRgin-gRNqBI0U5Lr0-S55BmnSp2jixi3iU9eTFCxDL77-vgsbXQVjq9253DrWh9GbJvGpwl9vXfYxujashkx-K5z0PsQ8cYHDPW-bnDswwD9EFy8RGcb20R39aNTtH64f1k8Zavicbm4W2WQU6YzXnIOpRRacmWF1hqoIpI50JVQwIS0vMoJlLxMC9WyUopVLimlFWg6z6fo5nh3F_zb4GJvtn4IXXppmBZcqjyXOlGzIwXBxxjcxuxC3dowGkrMoTRzKM38lpYC82PgvW7c-A9tnteL4i_7DcOwchI</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Thüsing, Kai</creator><creator>Sobotta, Sacha</creator><creator>Schlüter, Dominik</creator><creator>Hoinka, Jennifer</creator><creator>Ayoubi, Mazen</creator><creator>Kropp, Thomas</creator><creator>Schumann, Alexander</creator><creator>Drossel, Welf‐Guntram</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2872-994X</orcidid></search><sort><creationdate>202308</creationdate><title>Iron‐based shape memory alloy active assembly connectors for civil structures</title><author>Thüsing, Kai ; Sobotta, Sacha ; Schlüter, Dominik ; Hoinka, Jennifer ; Ayoubi, Mazen ; Kropp, Thomas ; Schumann, Alexander ; Drossel, Welf‐Guntram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3128-4b44cb658647a5888c17062ec8d57c256a4d30cb4bc25186d772de86d11dc8193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>active assembly</topic><topic>Assembly</topic><topic>Carbon</topic><topic>carbon reinforced concrete</topic><topic>Connectors</topic><topic>Design parameters</topic><topic>Facades</topic><topic>façade panels</topic><topic>Field tests</topic><topic>Heating</topic><topic>Iron</topic><topic>iron‐based shape memory alloy</topic><topic>Shape memory alloys</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thüsing, Kai</creatorcontrib><creatorcontrib>Sobotta, Sacha</creatorcontrib><creatorcontrib>Schlüter, Dominik</creatorcontrib><creatorcontrib>Hoinka, Jennifer</creatorcontrib><creatorcontrib>Ayoubi, Mazen</creatorcontrib><creatorcontrib>Kropp, Thomas</creatorcontrib><creatorcontrib>Schumann, Alexander</creatorcontrib><creatorcontrib>Drossel, Welf‐Guntram</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Structural concrete : journal of the FIB</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thüsing, Kai</au><au>Sobotta, Sacha</au><au>Schlüter, Dominik</au><au>Hoinka, Jennifer</au><au>Ayoubi, Mazen</au><au>Kropp, Thomas</au><au>Schumann, Alexander</au><au>Drossel, Welf‐Guntram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron‐based shape memory alloy active assembly connectors for civil structures</atitle><jtitle>Structural concrete : journal of the FIB</jtitle><date>2023-08</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>5184</spage><epage>5196</epage><pages>5184-5196</pages><issn>1464-4177</issn><eissn>1751-7648</eissn><abstract>The lack of suitable connectors for thin‐walled carbon concrete elements with their known resource and material saving properties still represents a major obstacle for practical application. On top, the on‐site installation remains a labor‐intensive task. To overcome this limitation, we report the development of an active assembly connector that enables simple and safe installation of carbon concrete façade elements and increases assembly efficiency. Moreover, the active assembly features permit an assembly without physical access to the connector, called blind assembly. Its concept is based on the recovery expansion of iron‐based shape memory alloys (Fe‐SMA). This paper presents material characteristics such as recovery stress and strain of the Fe‐SMA in compression. The connector concept uses an anchor rail that blocks the recovery extraction of a Fe‐SMA‐fastener to produce a stable, frictional and linear connection. Tensile tests show the impact of design parameters and high pull‐out forces with sufficient design. Also, ongoing long term tensile tests show small creep, so far. The anchor channels integrate well with carbon concrete façade panels. The heating concept with heating cartridges works well, even under cold winter conditions. Wind test results exceed requirements. Finally, a field test shows excellent installation results and proves the ease of assembly as well as the ability for blind assembly.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/suco.202200418</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2872-994X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-4177
ispartof Structural concrete : journal of the FIB, 2023-08, Vol.24 (4), p.5184-5196
issn 1464-4177
1751-7648
language eng
recordid cdi_proquest_journals_2854673368
source Wiley Online Library All Journals
subjects active assembly
Assembly
Carbon
carbon reinforced concrete
Connectors
Design parameters
Facades
façade panels
Field tests
Heating
Iron
iron‐based shape memory alloy
Shape memory alloys
Tensile tests
title Iron‐based shape memory alloy active assembly connectors for civil structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%E2%80%90based%20shape%20memory%20alloy%20active%20assembly%20connectors%20for%20civil%20structures&rft.jtitle=Structural%20concrete%20:%20journal%20of%20the%20FIB&rft.au=Th%C3%BCsing,%20Kai&rft.date=2023-08&rft.volume=24&rft.issue=4&rft.spage=5184&rft.epage=5196&rft.pages=5184-5196&rft.issn=1464-4177&rft.eissn=1751-7648&rft_id=info:doi/10.1002/suco.202200418&rft_dat=%3Cproquest_cross%3E2854673368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854673368&rft_id=info:pmid/&rfr_iscdi=true