Gamma conjecture II for quadrics

The Gamma conjecture II for the quantum cohomology of a Fano manifold F , proposed by Galkin, Golyshev and Iritani, describes the asymptotic behavior of the flat sections of the Dubrovin connection near the irregular singularities, in terms of a full exceptional collection, if there exists, of D b (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2023-10, Vol.387 (1-2), p.927-983
Hauptverfasser: Hu, Xiaowen, Ke, Hua-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Gamma conjecture II for the quantum cohomology of a Fano manifold F , proposed by Galkin, Golyshev and Iritani, describes the asymptotic behavior of the flat sections of the Dubrovin connection near the irregular singularities, in terms of a full exceptional collection, if there exists, of D b ( F ) and the Γ ^ -integral structure. In this paper, for the smooth quadric hypersurfaces we prove the convergence of the full quantum cohomology and Gamma II. For the proof, we first give a criterion on Gamma II for Fano manifolds with semisimple quantum cohomology, by Dubrovin’s theorem of analytic continuations of semisimple Frobenius manifolds. Then we work out a closed formula of the Chern characters of spinor bundles on quadrics. By the deformation-invariance of Gromov–Witten invariants we show that the full quantum cohomology can be reconstructed by its ambient part, and use this to obtain estimations. Finally we complete the proof of Gamma II for quadrics by explicit asymptotic expansions of flat sections corresponding to Kapranov’s exceptional collections and an application of our criterion.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-022-02477-7