POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS

The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate veloci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics and technical physics 2023-06, Vol.64 (3), p.442-454
Hauptverfasser: Maklakov, D. V., Petrov, A. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue 3
container_start_page 442
container_title Journal of applied mechanics and technical physics
container_volume 64
creator Maklakov, D. V.
Petrov, A. G.
description The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate velocities are derived in terms of the Jacobi theta functions. The circulations around the cylinders are uniquely determined using Goldshtik’s minimax principle: the circulations must be chosen so that the maximum fluid velocity in the stream is minimal.
doi_str_mv 10.1134/S0021894423030100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2854474576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854474576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-38f6931d911a89c7cd15e44638d49ad66493c9943ccd15282cc50041057ccd7b3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRMFY_gLeAV6Pv7W72zzGkrQZCImlC8RTiJhGLtnW3PfjtTYjgQTw9mPnNPBhCrhHuEBm_XwFQVJpzyoABApwQD0PJAiUonBJvtIPRPycXzm0AQCuUHrl9ystFViZR6i_TfO1HRV5lc79c536cFHGVRoUfP6dJNl8Uq0ty1jfvrrv6uTNSLRdl_Bik-UMSR2lgqFCHgKleaIatRmyUNtK0GHacC6ZarptWCK6Z0ZozMzpUUWNCAI4QykGRL2xGbqbevd19Hjt3qDe7o90OL2uqQs4lD6UYKJwoY3fO2a6v9_bto7FfNUI9jlL_GWXI0CnjBnb72tnf5v9D34LrXF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854474576</pqid></control><display><type>article</type><title>POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS</title><source>SpringerNature Journals</source><creator>Maklakov, D. V. ; Petrov, A. G.</creator><creatorcontrib>Maklakov, D. V. ; Petrov, A. G.</creatorcontrib><description>The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate velocities are derived in terms of the Jacobi theta functions. The circulations around the cylinders are uniquely determined using Goldshtik’s minimax principle: the circulations must be chosen so that the maximum fluid velocity in the stream is minimal.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894423030100</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Circular cylinders ; Classical and Continuum Physics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Minimax technique ; Physics ; Physics and Astronomy ; Potential flow ; Two dimensional flow</subject><ispartof>Journal of applied mechanics and technical physics, 2023-06, Vol.64 (3), p.442-454</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-38f6931d911a89c7cd15e44638d49ad66493c9943ccd15282cc50041057ccd7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894423030100$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894423030100$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maklakov, D. V.</creatorcontrib><creatorcontrib>Petrov, A. G.</creatorcontrib><title>POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate velocities are derived in terms of the Jacobi theta functions. The circulations around the cylinders are uniquely determined using Goldshtik’s minimax principle: the circulations must be chosen so that the maximum fluid velocity in the stream is minimal.</description><subject>Applications of Mathematics</subject><subject>Circular cylinders</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Minimax technique</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential flow</subject><subject>Two dimensional flow</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRMFY_gLeAV6Pv7W72zzGkrQZCImlC8RTiJhGLtnW3PfjtTYjgQTw9mPnNPBhCrhHuEBm_XwFQVJpzyoABApwQD0PJAiUonBJvtIPRPycXzm0AQCuUHrl9ystFViZR6i_TfO1HRV5lc79c536cFHGVRoUfP6dJNl8Uq0ty1jfvrrv6uTNSLRdl_Bik-UMSR2lgqFCHgKleaIatRmyUNtK0GHacC6ZarptWCK6Z0ZozMzpUUWNCAI4QykGRL2xGbqbevd19Hjt3qDe7o90OL2uqQs4lD6UYKJwoY3fO2a6v9_bto7FfNUI9jlL_GWXI0CnjBnb72tnf5v9D34LrXF0</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Maklakov, D. V.</creator><creator>Petrov, A. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS</title><author>Maklakov, D. V. ; Petrov, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-38f6931d911a89c7cd15e44638d49ad66493c9943ccd15282cc50041057ccd7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Circular cylinders</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Minimax technique</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential flow</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maklakov, D. V.</creatorcontrib><creatorcontrib>Petrov, A. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maklakov, D. V.</au><au>Petrov, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>64</volume><issue>3</issue><spage>442</spage><epage>454</epage><pages>442-454</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate velocities are derived in terms of the Jacobi theta functions. The circulations around the cylinders are uniquely determined using Goldshtik’s minimax principle: the circulations must be chosen so that the maximum fluid velocity in the stream is minimal.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894423030100</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8944
ispartof Journal of applied mechanics and technical physics, 2023-06, Vol.64 (3), p.442-454
issn 0021-8944
1573-8620
language eng
recordid cdi_proquest_journals_2854474576
source SpringerNature Journals
subjects Applications of Mathematics
Circular cylinders
Classical and Continuum Physics
Classical Mechanics
Fluid- and Aerodynamics
Mathematical Modeling and Industrial Mathematics
Mechanical Engineering
Minimax technique
Physics
Physics and Astronomy
Potential flow
Two dimensional flow
title POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POTENTIAL%20FLOW%20AROUND%20TWO%20CIRCULAR%20CYLINDERS&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Maklakov,%20D.%20V.&rft.date=2023-06-01&rft.volume=64&rft.issue=3&rft.spage=442&rft.epage=454&rft.pages=442-454&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894423030100&rft_dat=%3Cproquest_cross%3E2854474576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854474576&rft_id=info:pmid/&rfr_iscdi=true