POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS
The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate veloci...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics and technical physics 2023-06, Vol.64 (3), p.442-454 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 454 |
---|---|
container_issue | 3 |
container_start_page | 442 |
container_title | Journal of applied mechanics and technical physics |
container_volume | 64 |
creator | Maklakov, D. V. Petrov, A. G. |
description | The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate velocities are derived in terms of the Jacobi theta functions. The circulations around the cylinders are uniquely determined using Goldshtik’s minimax principle: the circulations must be chosen so that the maximum fluid velocity in the stream is minimal. |
doi_str_mv | 10.1134/S0021894423030100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2854474576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854474576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-38f6931d911a89c7cd15e44638d49ad66493c9943ccd15282cc50041057ccd7b3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRMFY_gLeAV6Pv7W72zzGkrQZCImlC8RTiJhGLtnW3PfjtTYjgQTw9mPnNPBhCrhHuEBm_XwFQVJpzyoABApwQD0PJAiUonBJvtIPRPycXzm0AQCuUHrl9ystFViZR6i_TfO1HRV5lc79c536cFHGVRoUfP6dJNl8Uq0ty1jfvrrv6uTNSLRdl_Bik-UMSR2lgqFCHgKleaIatRmyUNtK0GHacC6ZarptWCK6Z0ZozMzpUUWNCAI4QykGRL2xGbqbevd19Hjt3qDe7o90OL2uqQs4lD6UYKJwoY3fO2a6v9_bto7FfNUI9jlL_GWXI0CnjBnb72tnf5v9D34LrXF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854474576</pqid></control><display><type>article</type><title>POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS</title><source>SpringerNature Journals</source><creator>Maklakov, D. V. ; Petrov, A. G.</creator><creatorcontrib>Maklakov, D. V. ; Petrov, A. G.</creatorcontrib><description>The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate velocities are derived in terms of the Jacobi theta functions. The circulations around the cylinders are uniquely determined using Goldshtik’s minimax principle: the circulations must be chosen so that the maximum fluid velocity in the stream is minimal.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894423030100</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Circular cylinders ; Classical and Continuum Physics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Minimax technique ; Physics ; Physics and Astronomy ; Potential flow ; Two dimensional flow</subject><ispartof>Journal of applied mechanics and technical physics, 2023-06, Vol.64 (3), p.442-454</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-38f6931d911a89c7cd15e44638d49ad66493c9943ccd15282cc50041057ccd7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894423030100$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894423030100$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maklakov, D. V.</creatorcontrib><creatorcontrib>Petrov, A. G.</creatorcontrib><title>POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate velocities are derived in terms of the Jacobi theta functions. The circulations around the cylinders are uniquely determined using Goldshtik’s minimax principle: the circulations must be chosen so that the maximum fluid velocity in the stream is minimal.</description><subject>Applications of Mathematics</subject><subject>Circular cylinders</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Minimax technique</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential flow</subject><subject>Two dimensional flow</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRMFY_gLeAV6Pv7W72zzGkrQZCImlC8RTiJhGLtnW3PfjtTYjgQTw9mPnNPBhCrhHuEBm_XwFQVJpzyoABApwQD0PJAiUonBJvtIPRPycXzm0AQCuUHrl9ystFViZR6i_TfO1HRV5lc79c536cFHGVRoUfP6dJNl8Uq0ty1jfvrrv6uTNSLRdl_Bik-UMSR2lgqFCHgKleaIatRmyUNtK0GHacC6ZarptWCK6Z0ZozMzpUUWNCAI4QykGRL2xGbqbevd19Hjt3qDe7o90OL2uqQs4lD6UYKJwoY3fO2a6v9_bto7FfNUI9jlL_GWXI0CnjBnb72tnf5v9D34LrXF0</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Maklakov, D. V.</creator><creator>Petrov, A. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS</title><author>Maklakov, D. V. ; Petrov, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-38f6931d911a89c7cd15e44638d49ad66493c9943ccd15282cc50041057ccd7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Circular cylinders</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Minimax technique</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential flow</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maklakov, D. V.</creatorcontrib><creatorcontrib>Petrov, A. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maklakov, D. V.</au><au>Petrov, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>64</volume><issue>3</issue><spage>442</spage><epage>454</epage><pages>442-454</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>The two-dimensional problem of potential flow around two circular cylinders is considered. The velocity at infinity, circulations around the cylinders, and the radii and relative position of the cylinders are given. Exact analytical formulas for the complex potential and the complex conjugate velocities are derived in terms of the Jacobi theta functions. The circulations around the cylinders are uniquely determined using Goldshtik’s minimax principle: the circulations must be chosen so that the maximum fluid velocity in the stream is minimal.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894423030100</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8944 |
ispartof | Journal of applied mechanics and technical physics, 2023-06, Vol.64 (3), p.442-454 |
issn | 0021-8944 1573-8620 |
language | eng |
recordid | cdi_proquest_journals_2854474576 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Circular cylinders Classical and Continuum Physics Classical Mechanics Fluid- and Aerodynamics Mathematical Modeling and Industrial Mathematics Mechanical Engineering Minimax technique Physics Physics and Astronomy Potential flow Two dimensional flow |
title | POTENTIAL FLOW AROUND TWO CIRCULAR CYLINDERS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POTENTIAL%20FLOW%20AROUND%20TWO%20CIRCULAR%20CYLINDERS&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Maklakov,%20D.%20V.&rft.date=2023-06-01&rft.volume=64&rft.issue=3&rft.spage=442&rft.epage=454&rft.pages=442-454&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894423030100&rft_dat=%3Cproquest_cross%3E2854474576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854474576&rft_id=info:pmid/&rfr_iscdi=true |