Uncertainty-based quality assurance of carotid artery wall segmentation in black-blood MRI

The application of deep learning models to large-scale data sets requires means for automatic quality assurance. We have previously developed a fully automatic algorithm for carotid artery wall segmentation in black-blood MRI that we aim to apply to large-scale data sets. This method identifies nest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Thibeau-Sutre, Elina, Alblas, Dieuwertje, Buurman, Sophie, Brune, Christoph, Wolterink, Jelmer M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Thibeau-Sutre, Elina
Alblas, Dieuwertje
Buurman, Sophie
Brune, Christoph
Wolterink, Jelmer M
description The application of deep learning models to large-scale data sets requires means for automatic quality assurance. We have previously developed a fully automatic algorithm for carotid artery wall segmentation in black-blood MRI that we aim to apply to large-scale data sets. This method identifies nested artery walls in 3D patches centered on the carotid artery. In this study, we investigate to what extent the uncertainty in the model predictions for the contour location can serve as a surrogate for error detection and, consequently, automatic quality assurance. We express the quality of automatic segmentations using the Dice similarity coefficient. The uncertainty in the model's prediction is estimated using either Monte Carlo dropout or test-time data augmentation. We found that (1) including uncertainty measurements did not degrade the quality of the segmentations, (2) uncertainty metrics provide a good proxy of the quality of our contours if the center found during the first step is enclosed in the lumen of the carotid artery and (3) they could be used to detect low-quality segmentations at the participant level. This automatic quality assurance tool might enable the application of our model in large-scale data sets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2854128444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854128444</sourcerecordid><originalsourceid>FETCH-proquest_journals_28541284443</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwDrRJqt1F0cFFdHEpt20qqTGx-UH69nbwAZzO8J0ZSRjnOS0FYwuSet9nWcY2W1YUPCH3m2mkC6hMGGmNXrYwRNQqjIDeR4cTg-2gQWeDagFdkG6ED2oNXj5e0gQMyhpQBmqNzZPW2toWzpfTisw71F6mvy7J-rC_7o707ewQpQ9Vb6MzE1WsLETOSiEE_-_6AoVvQww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854128444</pqid></control><display><type>article</type><title>Uncertainty-based quality assurance of carotid artery wall segmentation in black-blood MRI</title><source>Free E- Journals</source><creator>Thibeau-Sutre, Elina ; Alblas, Dieuwertje ; Buurman, Sophie ; Brune, Christoph ; Wolterink, Jelmer M</creator><creatorcontrib>Thibeau-Sutre, Elina ; Alblas, Dieuwertje ; Buurman, Sophie ; Brune, Christoph ; Wolterink, Jelmer M</creatorcontrib><description>The application of deep learning models to large-scale data sets requires means for automatic quality assurance. We have previously developed a fully automatic algorithm for carotid artery wall segmentation in black-blood MRI that we aim to apply to large-scale data sets. This method identifies nested artery walls in 3D patches centered on the carotid artery. In this study, we investigate to what extent the uncertainty in the model predictions for the contour location can serve as a surrogate for error detection and, consequently, automatic quality assurance. We express the quality of automatic segmentations using the Dice similarity coefficient. The uncertainty in the model's prediction is estimated using either Monte Carlo dropout or test-time data augmentation. We found that (1) including uncertainty measurements did not degrade the quality of the segmentations, (2) uncertainty metrics provide a good proxy of the quality of our contours if the center found during the first step is enclosed in the lumen of the carotid artery and (3) they could be used to detect low-quality segmentations at the participant level. This automatic quality assurance tool might enable the application of our model in large-scale data sets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Blood ; Carotid arteries ; Data augmentation ; Datasets ; Error detection ; Image segmentation ; Machine learning ; Quality assurance ; Quality control ; Uncertainty ; Veins &amp; arteries</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Thibeau-Sutre, Elina</creatorcontrib><creatorcontrib>Alblas, Dieuwertje</creatorcontrib><creatorcontrib>Buurman, Sophie</creatorcontrib><creatorcontrib>Brune, Christoph</creatorcontrib><creatorcontrib>Wolterink, Jelmer M</creatorcontrib><title>Uncertainty-based quality assurance of carotid artery wall segmentation in black-blood MRI</title><title>arXiv.org</title><description>The application of deep learning models to large-scale data sets requires means for automatic quality assurance. We have previously developed a fully automatic algorithm for carotid artery wall segmentation in black-blood MRI that we aim to apply to large-scale data sets. This method identifies nested artery walls in 3D patches centered on the carotid artery. In this study, we investigate to what extent the uncertainty in the model predictions for the contour location can serve as a surrogate for error detection and, consequently, automatic quality assurance. We express the quality of automatic segmentations using the Dice similarity coefficient. The uncertainty in the model's prediction is estimated using either Monte Carlo dropout or test-time data augmentation. We found that (1) including uncertainty measurements did not degrade the quality of the segmentations, (2) uncertainty metrics provide a good proxy of the quality of our contours if the center found during the first step is enclosed in the lumen of the carotid artery and (3) they could be used to detect low-quality segmentations at the participant level. This automatic quality assurance tool might enable the application of our model in large-scale data sets.</description><subject>Algorithms</subject><subject>Blood</subject><subject>Carotid arteries</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Error detection</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>Uncertainty</subject><subject>Veins &amp; arteries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwDrRJqt1F0cFFdHEpt20qqTGx-UH69nbwAZzO8J0ZSRjnOS0FYwuSet9nWcY2W1YUPCH3m2mkC6hMGGmNXrYwRNQqjIDeR4cTg-2gQWeDagFdkG6ED2oNXj5e0gQMyhpQBmqNzZPW2toWzpfTisw71F6mvy7J-rC_7o707ewQpQ9Vb6MzE1WsLETOSiEE_-_6AoVvQww</recordid><startdate>20230818</startdate><enddate>20230818</enddate><creator>Thibeau-Sutre, Elina</creator><creator>Alblas, Dieuwertje</creator><creator>Buurman, Sophie</creator><creator>Brune, Christoph</creator><creator>Wolterink, Jelmer M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230818</creationdate><title>Uncertainty-based quality assurance of carotid artery wall segmentation in black-blood MRI</title><author>Thibeau-Sutre, Elina ; Alblas, Dieuwertje ; Buurman, Sophie ; Brune, Christoph ; Wolterink, Jelmer M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28541284443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Blood</topic><topic>Carotid arteries</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Error detection</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>Uncertainty</topic><topic>Veins &amp; arteries</topic><toplevel>online_resources</toplevel><creatorcontrib>Thibeau-Sutre, Elina</creatorcontrib><creatorcontrib>Alblas, Dieuwertje</creatorcontrib><creatorcontrib>Buurman, Sophie</creatorcontrib><creatorcontrib>Brune, Christoph</creatorcontrib><creatorcontrib>Wolterink, Jelmer M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thibeau-Sutre, Elina</au><au>Alblas, Dieuwertje</au><au>Buurman, Sophie</au><au>Brune, Christoph</au><au>Wolterink, Jelmer M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Uncertainty-based quality assurance of carotid artery wall segmentation in black-blood MRI</atitle><jtitle>arXiv.org</jtitle><date>2023-08-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The application of deep learning models to large-scale data sets requires means for automatic quality assurance. We have previously developed a fully automatic algorithm for carotid artery wall segmentation in black-blood MRI that we aim to apply to large-scale data sets. This method identifies nested artery walls in 3D patches centered on the carotid artery. In this study, we investigate to what extent the uncertainty in the model predictions for the contour location can serve as a surrogate for error detection and, consequently, automatic quality assurance. We express the quality of automatic segmentations using the Dice similarity coefficient. The uncertainty in the model's prediction is estimated using either Monte Carlo dropout or test-time data augmentation. We found that (1) including uncertainty measurements did not degrade the quality of the segmentations, (2) uncertainty metrics provide a good proxy of the quality of our contours if the center found during the first step is enclosed in the lumen of the carotid artery and (3) they could be used to detect low-quality segmentations at the participant level. This automatic quality assurance tool might enable the application of our model in large-scale data sets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2854128444
source Free E- Journals
subjects Algorithms
Blood
Carotid arteries
Data augmentation
Datasets
Error detection
Image segmentation
Machine learning
Quality assurance
Quality control
Uncertainty
Veins & arteries
title Uncertainty-based quality assurance of carotid artery wall segmentation in black-blood MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Uncertainty-based%20quality%20assurance%20of%20carotid%20artery%20wall%20segmentation%20in%20black-blood%20MRI&rft.jtitle=arXiv.org&rft.au=Thibeau-Sutre,%20Elina&rft.date=2023-08-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2854128444%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854128444&rft_id=info:pmid/&rfr_iscdi=true