Boosting Fe Cationic Vacancies with Graphdiyne to Enhance Exceptional Pseudocapacitive Lithium Intercalation
Modulating the electronic structure of electrode materials at atomic level is the key to controlling electrodes with outstanding rate capability. On the basis of modulating the iron cationic vacancies (IV) and electronic structure of materials, we proposed the method of preparing graphdiyne/ferrofer...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-08, Vol.135 (35), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 135 |
creator | Gao, Jingchi Yan, Xingru Huang, Changshui Zhang, Zhihui Fu, Xinlong Chang, Qian He, Feng Li, Meiping Li, Yuliang |
description | Modulating the electronic structure of electrode materials at atomic level is the key to controlling electrodes with outstanding rate capability. On the basis of modulating the iron cationic vacancies (IV) and electronic structure of materials, we proposed the method of preparing graphdiyne/ferroferric oxide heterostructure (IV‐GDY‐FO) as anode materials. The goal is to motivate lithium‐ion batteries (LIBs) toward ultra‐high capacity, superior cyclic stability, and excellent rate performance. The graphdiyne is used as carriers to disperse Fe3O4 uniformly without agglomeration and induce high valence of Fe with reducing the energy in the system. The presence of Fe vacancy could regulate the charge distribution around vacancies and adjacent atoms, leading to facilitate electronic transportation, enlarge the lithium‐ion diffusion, and decrease Li+ diffusion barriers, and thus displaying significant pseudocapacitive process and advantageous lithium‐ion storage. The optimized electrode IV‐GDY‐FO reveals a capacity of 2084.1 mAh g−1 at 0.1 C, superior cycle stability and rate performance with a high specific capacity of 1057.4 mAh g−1 even at 10 C.
Graphdiyne as anode material in Li‐ion batteries can realize effective charge transfer to induce the formation of a high number of Fe vacancies with uniform dispersion. The Fe vacancies modulate charge distribution, serve as active sites and enhance electron‐ion transportation, thereby displaying robust pseudocapacitive behavior. The Fe vacancies also reduce the diffusion energy barrier and adsorption energies, leading to a superior battery performance. |
doi_str_mv | 10.1002/ange.202307874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853975632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853975632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1624-2e6189624f6fe08c940c13ec879ac7a98c90ca7b91d7ea4681ce34693c1a47603</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMltiTvFX7HgsVVoqVcAArJZxL62rNAl2Qul_T0oRjEx3unu_p6eH0DUlI0oIu7XVCkaMME5UpsQJGtCU0YSrVJ2iASFCJBkT-hxdxLghhEim9ACVd3UdW1-t8BTwxLa-rrzDr9bZynmIeOfbNZ4F26yXfl8BbmucV-v-CTj_dNAcAFvipwjdsna2sc63_gPwoud8t8XzqoXgbPntfInOCltGuPqZQ_QyzZ8n98nicTafjBeJo5KJhIGkme63QhZAMqcFcZSDy5S2TlndX4iz6k3TpQIrZEYdcCE1d9QKJQkfopujbxPq9w5iazZ1F_qc0bAs5VqlkrNeNTqqXKhjDFCYJvitDXtDiTk0ag6Nmt9Ge0AfgZ0vYf-P2owfZvkf-wXmOnta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853975632</pqid></control><display><type>article</type><title>Boosting Fe Cationic Vacancies with Graphdiyne to Enhance Exceptional Pseudocapacitive Lithium Intercalation</title><source>Wiley Journals</source><creator>Gao, Jingchi ; Yan, Xingru ; Huang, Changshui ; Zhang, Zhihui ; Fu, Xinlong ; Chang, Qian ; He, Feng ; Li, Meiping ; Li, Yuliang</creator><creatorcontrib>Gao, Jingchi ; Yan, Xingru ; Huang, Changshui ; Zhang, Zhihui ; Fu, Xinlong ; Chang, Qian ; He, Feng ; Li, Meiping ; Li, Yuliang</creatorcontrib><description>Modulating the electronic structure of electrode materials at atomic level is the key to controlling electrodes with outstanding rate capability. On the basis of modulating the iron cationic vacancies (IV) and electronic structure of materials, we proposed the method of preparing graphdiyne/ferroferric oxide heterostructure (IV‐GDY‐FO) as anode materials. The goal is to motivate lithium‐ion batteries (LIBs) toward ultra‐high capacity, superior cyclic stability, and excellent rate performance. The graphdiyne is used as carriers to disperse Fe3O4 uniformly without agglomeration and induce high valence of Fe with reducing the energy in the system. The presence of Fe vacancy could regulate the charge distribution around vacancies and adjacent atoms, leading to facilitate electronic transportation, enlarge the lithium‐ion diffusion, and decrease Li+ diffusion barriers, and thus displaying significant pseudocapacitive process and advantageous lithium‐ion storage. The optimized electrode IV‐GDY‐FO reveals a capacity of 2084.1 mAh g−1 at 0.1 C, superior cycle stability and rate performance with a high specific capacity of 1057.4 mAh g−1 even at 10 C.
Graphdiyne as anode material in Li‐ion batteries can realize effective charge transfer to induce the formation of a high number of Fe vacancies with uniform dispersion. The Fe vacancies modulate charge distribution, serve as active sites and enhance electron‐ion transportation, thereby displaying robust pseudocapacitive behavior. The Fe vacancies also reduce the diffusion energy barrier and adsorption energies, leading to a superior battery performance.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202307874</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Cations ; Charge distribution ; Chemistry ; Diffusion barriers ; Electrode materials ; Electrodes ; Electron Modulation ; Electronic structure ; Fe Vacancies ; Graphdiyne ; Heterostructures ; Ion diffusion ; Ion storage ; Iron oxides ; Lithium ; Lithium-Ion Batteries ; Outstanding Rate Capability ; Specific capacity ; Stability</subject><ispartof>Angewandte Chemie, 2023-08, Vol.135 (35), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1624-2e6189624f6fe08c940c13ec879ac7a98c90ca7b91d7ea4681ce34693c1a47603</citedby><cites>FETCH-LOGICAL-c1624-2e6189624f6fe08c940c13ec879ac7a98c90ca7b91d7ea4681ce34693c1a47603</cites><orcidid>0000-0001-5279-0399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202307874$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202307874$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gao, Jingchi</creatorcontrib><creatorcontrib>Yan, Xingru</creatorcontrib><creatorcontrib>Huang, Changshui</creatorcontrib><creatorcontrib>Zhang, Zhihui</creatorcontrib><creatorcontrib>Fu, Xinlong</creatorcontrib><creatorcontrib>Chang, Qian</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Li, Meiping</creatorcontrib><creatorcontrib>Li, Yuliang</creatorcontrib><title>Boosting Fe Cationic Vacancies with Graphdiyne to Enhance Exceptional Pseudocapacitive Lithium Intercalation</title><title>Angewandte Chemie</title><description>Modulating the electronic structure of electrode materials at atomic level is the key to controlling electrodes with outstanding rate capability. On the basis of modulating the iron cationic vacancies (IV) and electronic structure of materials, we proposed the method of preparing graphdiyne/ferroferric oxide heterostructure (IV‐GDY‐FO) as anode materials. The goal is to motivate lithium‐ion batteries (LIBs) toward ultra‐high capacity, superior cyclic stability, and excellent rate performance. The graphdiyne is used as carriers to disperse Fe3O4 uniformly without agglomeration and induce high valence of Fe with reducing the energy in the system. The presence of Fe vacancy could regulate the charge distribution around vacancies and adjacent atoms, leading to facilitate electronic transportation, enlarge the lithium‐ion diffusion, and decrease Li+ diffusion barriers, and thus displaying significant pseudocapacitive process and advantageous lithium‐ion storage. The optimized electrode IV‐GDY‐FO reveals a capacity of 2084.1 mAh g−1 at 0.1 C, superior cycle stability and rate performance with a high specific capacity of 1057.4 mAh g−1 even at 10 C.
Graphdiyne as anode material in Li‐ion batteries can realize effective charge transfer to induce the formation of a high number of Fe vacancies with uniform dispersion. The Fe vacancies modulate charge distribution, serve as active sites and enhance electron‐ion transportation, thereby displaying robust pseudocapacitive behavior. The Fe vacancies also reduce the diffusion energy barrier and adsorption energies, leading to a superior battery performance.</description><subject>Anodes</subject><subject>Cations</subject><subject>Charge distribution</subject><subject>Chemistry</subject><subject>Diffusion barriers</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron Modulation</subject><subject>Electronic structure</subject><subject>Fe Vacancies</subject><subject>Graphdiyne</subject><subject>Heterostructures</subject><subject>Ion diffusion</subject><subject>Ion storage</subject><subject>Iron oxides</subject><subject>Lithium</subject><subject>Lithium-Ion Batteries</subject><subject>Outstanding Rate Capability</subject><subject>Specific capacity</subject><subject>Stability</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwMltiTvFX7HgsVVoqVcAArJZxL62rNAl2Qul_T0oRjEx3unu_p6eH0DUlI0oIu7XVCkaMME5UpsQJGtCU0YSrVJ2iASFCJBkT-hxdxLghhEim9ACVd3UdW1-t8BTwxLa-rrzDr9bZynmIeOfbNZ4F26yXfl8BbmucV-v-CTj_dNAcAFvipwjdsna2sc63_gPwoud8t8XzqoXgbPntfInOCltGuPqZQ_QyzZ8n98nicTafjBeJo5KJhIGkme63QhZAMqcFcZSDy5S2TlndX4iz6k3TpQIrZEYdcCE1d9QKJQkfopujbxPq9w5iazZ1F_qc0bAs5VqlkrNeNTqqXKhjDFCYJvitDXtDiTk0ag6Nmt9Ge0AfgZ0vYf-P2owfZvkf-wXmOnta</recordid><startdate>20230828</startdate><enddate>20230828</enddate><creator>Gao, Jingchi</creator><creator>Yan, Xingru</creator><creator>Huang, Changshui</creator><creator>Zhang, Zhihui</creator><creator>Fu, Xinlong</creator><creator>Chang, Qian</creator><creator>He, Feng</creator><creator>Li, Meiping</creator><creator>Li, Yuliang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5279-0399</orcidid></search><sort><creationdate>20230828</creationdate><title>Boosting Fe Cationic Vacancies with Graphdiyne to Enhance Exceptional Pseudocapacitive Lithium Intercalation</title><author>Gao, Jingchi ; Yan, Xingru ; Huang, Changshui ; Zhang, Zhihui ; Fu, Xinlong ; Chang, Qian ; He, Feng ; Li, Meiping ; Li, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1624-2e6189624f6fe08c940c13ec879ac7a98c90ca7b91d7ea4681ce34693c1a47603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Cations</topic><topic>Charge distribution</topic><topic>Chemistry</topic><topic>Diffusion barriers</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron Modulation</topic><topic>Electronic structure</topic><topic>Fe Vacancies</topic><topic>Graphdiyne</topic><topic>Heterostructures</topic><topic>Ion diffusion</topic><topic>Ion storage</topic><topic>Iron oxides</topic><topic>Lithium</topic><topic>Lithium-Ion Batteries</topic><topic>Outstanding Rate Capability</topic><topic>Specific capacity</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jingchi</creatorcontrib><creatorcontrib>Yan, Xingru</creatorcontrib><creatorcontrib>Huang, Changshui</creatorcontrib><creatorcontrib>Zhang, Zhihui</creatorcontrib><creatorcontrib>Fu, Xinlong</creatorcontrib><creatorcontrib>Chang, Qian</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Li, Meiping</creatorcontrib><creatorcontrib>Li, Yuliang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jingchi</au><au>Yan, Xingru</au><au>Huang, Changshui</au><au>Zhang, Zhihui</au><au>Fu, Xinlong</au><au>Chang, Qian</au><au>He, Feng</au><au>Li, Meiping</au><au>Li, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Fe Cationic Vacancies with Graphdiyne to Enhance Exceptional Pseudocapacitive Lithium Intercalation</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-08-28</date><risdate>2023</risdate><volume>135</volume><issue>35</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Modulating the electronic structure of electrode materials at atomic level is the key to controlling electrodes with outstanding rate capability. On the basis of modulating the iron cationic vacancies (IV) and electronic structure of materials, we proposed the method of preparing graphdiyne/ferroferric oxide heterostructure (IV‐GDY‐FO) as anode materials. The goal is to motivate lithium‐ion batteries (LIBs) toward ultra‐high capacity, superior cyclic stability, and excellent rate performance. The graphdiyne is used as carriers to disperse Fe3O4 uniformly without agglomeration and induce high valence of Fe with reducing the energy in the system. The presence of Fe vacancy could regulate the charge distribution around vacancies and adjacent atoms, leading to facilitate electronic transportation, enlarge the lithium‐ion diffusion, and decrease Li+ diffusion barriers, and thus displaying significant pseudocapacitive process and advantageous lithium‐ion storage. The optimized electrode IV‐GDY‐FO reveals a capacity of 2084.1 mAh g−1 at 0.1 C, superior cycle stability and rate performance with a high specific capacity of 1057.4 mAh g−1 even at 10 C.
Graphdiyne as anode material in Li‐ion batteries can realize effective charge transfer to induce the formation of a high number of Fe vacancies with uniform dispersion. The Fe vacancies modulate charge distribution, serve as active sites and enhance electron‐ion transportation, thereby displaying robust pseudocapacitive behavior. The Fe vacancies also reduce the diffusion energy barrier and adsorption energies, leading to a superior battery performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202307874</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5279-0399</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2023-08, Vol.135 (35), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2853975632 |
source | Wiley Journals |
subjects | Anodes Cations Charge distribution Chemistry Diffusion barriers Electrode materials Electrodes Electron Modulation Electronic structure Fe Vacancies Graphdiyne Heterostructures Ion diffusion Ion storage Iron oxides Lithium Lithium-Ion Batteries Outstanding Rate Capability Specific capacity Stability |
title | Boosting Fe Cationic Vacancies with Graphdiyne to Enhance Exceptional Pseudocapacitive Lithium Intercalation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Fe%20Cationic%20Vacancies%20with%20Graphdiyne%20to%20Enhance%20Exceptional%20Pseudocapacitive%20Lithium%20Intercalation&rft.jtitle=Angewandte%20Chemie&rft.au=Gao,%20Jingchi&rft.date=2023-08-28&rft.volume=135&rft.issue=35&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202307874&rft_dat=%3Cproquest_cross%3E2853975632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853975632&rft_id=info:pmid/&rfr_iscdi=true |