Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework
Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural economics 2023-09, Vol.74 (3), p.686-701 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 701 |
---|---|
container_issue | 3 |
container_start_page | 686 |
container_title | Journal of agricultural economics |
container_volume | 74 |
creator | Yi, Jing Cohen, Samantha Rehkamp, Sarah Canning, Patrick Gómez, Miguel I. Ge, Houtian |
description | Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis. |
doi_str_mv | 10.1111/1477-9552.12523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853965406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853965406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4473-51cd09bb0bcd0f0db8743099ee9094591a854bf044f2f6ccec3ed13d3c4b69643</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqUws1piTms7dhKzVVUpoEpdQGKzHMeuXJK42CklG5_AN_IlJATByFuu3tO5V08XgEuMJribKaZpGnHGyAQTRuIjMPq9HIMRQgRHGUufTsFZCNt-xYyMgFy_aq9cZesNLGQjYS69t9oHaGsYdrKxsoRy4-3n-4dxroChDY2uApS1LNtgwzWcQVPqN5uXGtpqt286j6uh8bLSB-efz8GJkWXQFz86Bo83i4f5bbRaL-_ms1WkKE3jiGFVIJ7nKO_UoCLPUhojzrXmiFPGscwYzQ2i1BCTKKVVrAscF7GiecITGo_B1ZC78-5lr0Mjtm7vuy-DIBmLecIoSjpqOlDKuxC8NmLnbSV9KzASfY-ib030rYnvHjsHHBxaudqGPz5jnDPC0rRDkgE52FK3_yWK-9lyMWR_Af4OgV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853965406</pqid></control><display><type>article</type><title>Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework</title><source>Access via Wiley Online Library</source><creator>Yi, Jing ; Cohen, Samantha ; Rehkamp, Sarah ; Canning, Patrick ; Gómez, Miguel I. ; Ge, Houtian</creator><creatorcontrib>Yi, Jing ; Cohen, Samantha ; Rehkamp, Sarah ; Canning, Patrick ; Gómez, Miguel I. ; Ge, Houtian</creatorcontrib><description>Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.</description><identifier>ISSN: 0021-857X</identifier><identifier>EISSN: 1477-9552</identifier><identifier>DOI: 10.1111/1477-9552.12523</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Agribusiness ; Agricultural production ; census of agriculture ; Censuses ; data suppressions ; Data systems ; Econometrics ; Flexibility ; Livestock ; mathematical programing ; Monte Carlo ; Optimization ; Spatial analysis ; Spatial data ; spatial data systems ; Systems analysis ; Usefulness</subject><ispartof>Journal of agricultural economics, 2023-09, Vol.74 (3), p.686-701</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of Agricultural Economics Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4473-51cd09bb0bcd0f0db8743099ee9094591a854bf044f2f6ccec3ed13d3c4b69643</citedby><cites>FETCH-LOGICAL-c4473-51cd09bb0bcd0f0db8743099ee9094591a854bf044f2f6ccec3ed13d3c4b69643</cites><orcidid>0000-0003-1076-3119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1477-9552.12523$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1477-9552.12523$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yi, Jing</creatorcontrib><creatorcontrib>Cohen, Samantha</creatorcontrib><creatorcontrib>Rehkamp, Sarah</creatorcontrib><creatorcontrib>Canning, Patrick</creatorcontrib><creatorcontrib>Gómez, Miguel I.</creatorcontrib><creatorcontrib>Ge, Houtian</creatorcontrib><title>Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework</title><title>Journal of agricultural economics</title><description>Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.</description><subject>Accuracy</subject><subject>Agribusiness</subject><subject>Agricultural production</subject><subject>census of agriculture</subject><subject>Censuses</subject><subject>data suppressions</subject><subject>Data systems</subject><subject>Econometrics</subject><subject>Flexibility</subject><subject>Livestock</subject><subject>mathematical programing</subject><subject>Monte Carlo</subject><subject>Optimization</subject><subject>Spatial analysis</subject><subject>Spatial data</subject><subject>spatial data systems</subject><subject>Systems analysis</subject><subject>Usefulness</subject><issn>0021-857X</issn><issn>1477-9552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAURS0EEqUws1piTms7dhKzVVUpoEpdQGKzHMeuXJK42CklG5_AN_IlJATByFuu3tO5V08XgEuMJribKaZpGnHGyAQTRuIjMPq9HIMRQgRHGUufTsFZCNt-xYyMgFy_aq9cZesNLGQjYS69t9oHaGsYdrKxsoRy4-3n-4dxroChDY2uApS1LNtgwzWcQVPqN5uXGtpqt286j6uh8bLSB-efz8GJkWXQFz86Bo83i4f5bbRaL-_ms1WkKE3jiGFVIJ7nKO_UoCLPUhojzrXmiFPGscwYzQ2i1BCTKKVVrAscF7GiecITGo_B1ZC78-5lr0Mjtm7vuy-DIBmLecIoSjpqOlDKuxC8NmLnbSV9KzASfY-ib030rYnvHjsHHBxaudqGPz5jnDPC0rRDkgE52FK3_yWK-9lyMWR_Af4OgV8</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Yi, Jing</creator><creator>Cohen, Samantha</creator><creator>Rehkamp, Sarah</creator><creator>Canning, Patrick</creator><creator>Gómez, Miguel I.</creator><creator>Ge, Houtian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1076-3119</orcidid></search><sort><creationdate>202309</creationdate><title>Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework</title><author>Yi, Jing ; Cohen, Samantha ; Rehkamp, Sarah ; Canning, Patrick ; Gómez, Miguel I. ; Ge, Houtian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4473-51cd09bb0bcd0f0db8743099ee9094591a854bf044f2f6ccec3ed13d3c4b69643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Agribusiness</topic><topic>Agricultural production</topic><topic>census of agriculture</topic><topic>Censuses</topic><topic>data suppressions</topic><topic>Data systems</topic><topic>Econometrics</topic><topic>Flexibility</topic><topic>Livestock</topic><topic>mathematical programing</topic><topic>Monte Carlo</topic><topic>Optimization</topic><topic>Spatial analysis</topic><topic>Spatial data</topic><topic>spatial data systems</topic><topic>Systems analysis</topic><topic>Usefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Jing</creatorcontrib><creatorcontrib>Cohen, Samantha</creatorcontrib><creatorcontrib>Rehkamp, Sarah</creatorcontrib><creatorcontrib>Canning, Patrick</creatorcontrib><creatorcontrib>Gómez, Miguel I.</creatorcontrib><creatorcontrib>Ge, Houtian</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Jing</au><au>Cohen, Samantha</au><au>Rehkamp, Sarah</au><au>Canning, Patrick</au><au>Gómez, Miguel I.</au><au>Ge, Houtian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework</atitle><jtitle>Journal of agricultural economics</jtitle><date>2023-09</date><risdate>2023</risdate><volume>74</volume><issue>3</issue><spage>686</spage><epage>701</epage><pages>686-701</pages><issn>0021-857X</issn><eissn>1477-9552</eissn><abstract>Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1477-9552.12523</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1076-3119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-857X |
ispartof | Journal of agricultural economics, 2023-09, Vol.74 (3), p.686-701 |
issn | 0021-857X 1477-9552 |
language | eng |
recordid | cdi_proquest_journals_2853965406 |
source | Access via Wiley Online Library |
subjects | Accuracy Agribusiness Agricultural production census of agriculture Censuses data suppressions Data systems Econometrics Flexibility Livestock mathematical programing Monte Carlo Optimization Spatial analysis Spatial data spatial data systems Systems analysis Usefulness |
title | Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20data%20barriers%20in%20spatial%20agri%E2%80%90food%20systems%20analysis:%20A%20flexible%20imputation%20framework&rft.jtitle=Journal%20of%20agricultural%20economics&rft.au=Yi,%20Jing&rft.date=2023-09&rft.volume=74&rft.issue=3&rft.spage=686&rft.epage=701&rft.pages=686-701&rft.issn=0021-857X&rft.eissn=1477-9552&rft_id=info:doi/10.1111/1477-9552.12523&rft_dat=%3Cproquest_cross%3E2853965406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853965406&rft_id=info:pmid/&rfr_iscdi=true |