Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework

Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural economics 2023-09, Vol.74 (3), p.686-701
Hauptverfasser: Yi, Jing, Cohen, Samantha, Rehkamp, Sarah, Canning, Patrick, Gómez, Miguel I., Ge, Houtian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 701
container_issue 3
container_start_page 686
container_title Journal of agricultural economics
container_volume 74
creator Yi, Jing
Cohen, Samantha
Rehkamp, Sarah
Canning, Patrick
Gómez, Miguel I.
Ge, Houtian
description Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.
doi_str_mv 10.1111/1477-9552.12523
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853965406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853965406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4473-51cd09bb0bcd0f0db8743099ee9094591a854bf044f2f6ccec3ed13d3c4b69643</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqUws1piTms7dhKzVVUpoEpdQGKzHMeuXJK42CklG5_AN_IlJATByFuu3tO5V08XgEuMJribKaZpGnHGyAQTRuIjMPq9HIMRQgRHGUufTsFZCNt-xYyMgFy_aq9cZesNLGQjYS69t9oHaGsYdrKxsoRy4-3n-4dxroChDY2uApS1LNtgwzWcQVPqN5uXGtpqt286j6uh8bLSB-efz8GJkWXQFz86Bo83i4f5bbRaL-_ms1WkKE3jiGFVIJ7nKO_UoCLPUhojzrXmiFPGscwYzQ2i1BCTKKVVrAscF7GiecITGo_B1ZC78-5lr0Mjtm7vuy-DIBmLecIoSjpqOlDKuxC8NmLnbSV9KzASfY-ib030rYnvHjsHHBxaudqGPz5jnDPC0rRDkgE52FK3_yWK-9lyMWR_Af4OgV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853965406</pqid></control><display><type>article</type><title>Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework</title><source>Access via Wiley Online Library</source><creator>Yi, Jing ; Cohen, Samantha ; Rehkamp, Sarah ; Canning, Patrick ; Gómez, Miguel I. ; Ge, Houtian</creator><creatorcontrib>Yi, Jing ; Cohen, Samantha ; Rehkamp, Sarah ; Canning, Patrick ; Gómez, Miguel I. ; Ge, Houtian</creatorcontrib><description>Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.</description><identifier>ISSN: 0021-857X</identifier><identifier>EISSN: 1477-9552</identifier><identifier>DOI: 10.1111/1477-9552.12523</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Agribusiness ; Agricultural production ; census of agriculture ; Censuses ; data suppressions ; Data systems ; Econometrics ; Flexibility ; Livestock ; mathematical programing ; Monte Carlo ; Optimization ; Spatial analysis ; Spatial data ; spatial data systems ; Systems analysis ; Usefulness</subject><ispartof>Journal of agricultural economics, 2023-09, Vol.74 (3), p.686-701</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Agricultural Economics Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4473-51cd09bb0bcd0f0db8743099ee9094591a854bf044f2f6ccec3ed13d3c4b69643</citedby><cites>FETCH-LOGICAL-c4473-51cd09bb0bcd0f0db8743099ee9094591a854bf044f2f6ccec3ed13d3c4b69643</cites><orcidid>0000-0003-1076-3119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1477-9552.12523$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1477-9552.12523$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yi, Jing</creatorcontrib><creatorcontrib>Cohen, Samantha</creatorcontrib><creatorcontrib>Rehkamp, Sarah</creatorcontrib><creatorcontrib>Canning, Patrick</creatorcontrib><creatorcontrib>Gómez, Miguel I.</creatorcontrib><creatorcontrib>Ge, Houtian</creatorcontrib><title>Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework</title><title>Journal of agricultural economics</title><description>Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.</description><subject>Accuracy</subject><subject>Agribusiness</subject><subject>Agricultural production</subject><subject>census of agriculture</subject><subject>Censuses</subject><subject>data suppressions</subject><subject>Data systems</subject><subject>Econometrics</subject><subject>Flexibility</subject><subject>Livestock</subject><subject>mathematical programing</subject><subject>Monte Carlo</subject><subject>Optimization</subject><subject>Spatial analysis</subject><subject>Spatial data</subject><subject>spatial data systems</subject><subject>Systems analysis</subject><subject>Usefulness</subject><issn>0021-857X</issn><issn>1477-9552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAURS0EEqUws1piTms7dhKzVVUpoEpdQGKzHMeuXJK42CklG5_AN_IlJATByFuu3tO5V08XgEuMJribKaZpGnHGyAQTRuIjMPq9HIMRQgRHGUufTsFZCNt-xYyMgFy_aq9cZesNLGQjYS69t9oHaGsYdrKxsoRy4-3n-4dxroChDY2uApS1LNtgwzWcQVPqN5uXGtpqt286j6uh8bLSB-efz8GJkWXQFz86Bo83i4f5bbRaL-_ms1WkKE3jiGFVIJ7nKO_UoCLPUhojzrXmiFPGscwYzQ2i1BCTKKVVrAscF7GiecITGo_B1ZC78-5lr0Mjtm7vuy-DIBmLecIoSjpqOlDKuxC8NmLnbSV9KzASfY-ib030rYnvHjsHHBxaudqGPz5jnDPC0rRDkgE52FK3_yWK-9lyMWR_Af4OgV8</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Yi, Jing</creator><creator>Cohen, Samantha</creator><creator>Rehkamp, Sarah</creator><creator>Canning, Patrick</creator><creator>Gómez, Miguel I.</creator><creator>Ge, Houtian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1076-3119</orcidid></search><sort><creationdate>202309</creationdate><title>Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework</title><author>Yi, Jing ; Cohen, Samantha ; Rehkamp, Sarah ; Canning, Patrick ; Gómez, Miguel I. ; Ge, Houtian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4473-51cd09bb0bcd0f0db8743099ee9094591a854bf044f2f6ccec3ed13d3c4b69643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Agribusiness</topic><topic>Agricultural production</topic><topic>census of agriculture</topic><topic>Censuses</topic><topic>data suppressions</topic><topic>Data systems</topic><topic>Econometrics</topic><topic>Flexibility</topic><topic>Livestock</topic><topic>mathematical programing</topic><topic>Monte Carlo</topic><topic>Optimization</topic><topic>Spatial analysis</topic><topic>Spatial data</topic><topic>spatial data systems</topic><topic>Systems analysis</topic><topic>Usefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Jing</creatorcontrib><creatorcontrib>Cohen, Samantha</creatorcontrib><creatorcontrib>Rehkamp, Sarah</creatorcontrib><creatorcontrib>Canning, Patrick</creatorcontrib><creatorcontrib>Gómez, Miguel I.</creatorcontrib><creatorcontrib>Ge, Houtian</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Jing</au><au>Cohen, Samantha</au><au>Rehkamp, Sarah</au><au>Canning, Patrick</au><au>Gómez, Miguel I.</au><au>Ge, Houtian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework</atitle><jtitle>Journal of agricultural economics</jtitle><date>2023-09</date><risdate>2023</risdate><volume>74</volume><issue>3</issue><spage>686</spage><epage>701</epage><pages>686-701</pages><issn>0021-857X</issn><eissn>1477-9552</eissn><abstract>Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1477-9552.12523</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1076-3119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-857X
ispartof Journal of agricultural economics, 2023-09, Vol.74 (3), p.686-701
issn 0021-857X
1477-9552
language eng
recordid cdi_proquest_journals_2853965406
source Access via Wiley Online Library
subjects Accuracy
Agribusiness
Agricultural production
census of agriculture
Censuses
data suppressions
Data systems
Econometrics
Flexibility
Livestock
mathematical programing
Monte Carlo
Optimization
Spatial analysis
Spatial data
spatial data systems
Systems analysis
Usefulness
title Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20data%20barriers%20in%20spatial%20agri%E2%80%90food%20systems%20analysis:%20A%20flexible%20imputation%20framework&rft.jtitle=Journal%20of%20agricultural%20economics&rft.au=Yi,%20Jing&rft.date=2023-09&rft.volume=74&rft.issue=3&rft.spage=686&rft.epage=701&rft.pages=686-701&rft.issn=0021-857X&rft.eissn=1477-9552&rft_id=info:doi/10.1111/1477-9552.12523&rft_dat=%3Cproquest_cross%3E2853965406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853965406&rft_id=info:pmid/&rfr_iscdi=true