Er3+–doped 0.94KNN–0.06Ca(Bi0.5Nb0.5)O3: a fluorescent transparent ceramic with optoelectronic multi-functionality
In this work, 0.94(K 0.5 Na 0.5 )NbO 3 –0.06Ca(Bi 0.5 Nb 0.5 )O 3 – x wt%Er 3+ ( x = 0, 0.1, 0.2, 0.3, 0.4) fluorescent transparent ceramics were prepared using traditional solid-phase method. The ceramics are of pseudo-cubic phase, and the average grain size of ceramic reaches the nanometer level....
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023-08, Vol.34 (23), p.1691, Article 1691 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 1691 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Shi, Shaoyang Wu, Huangtao Liu, Xiang Wang, Hua Xu, Jiwen Yang, Ling Qiu, Wei |
description | In this work, 0.94(K
0.5
Na
0.5
)NbO
3
–0.06Ca(Bi
0.5
Nb
0.5
)O
3
–
x
wt%Er
3+
(
x
= 0, 0.1, 0.2, 0.3, 0.4) fluorescent transparent ceramics were prepared using traditional solid-phase method. The ceramics are of pseudo-cubic phase, and the average grain size of ceramic reaches the nanometer level. The results show that when
x
= 0.1, high transmittance of 74.85 and 77.10% are achieved at 780 nm (visible region) and 1100 nm (near-infrared region) respectively. Meanwhile, the ceramic samples have good up-conversion luminescence performance, with green emission at 530 and 550 nm, and red emission at 660 nm. In addition, the maximum dielectric constant of 1030 is obtained at
x
= 0.3. In this paper, a highly transparent, versatile, and environmentally friendly ceramic was designed. It provides a useful reference for the development of transparent memory devices, transfer capacitors, or sensors. |
doi_str_mv | 10.1007/s10854-023-11114-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853132344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853132344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-664e85c1541916dfbb024bd69ce584a62c5b27d9006b839fd16c1ee3a4bc1fca3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEBYRc1q804QZVeYiqvYDEzXIcB4LSONgOqDf-gT_kS3ApEjf2sC_NjHYHoUMCIwIwPvMEMsExUIZJDI7JFhoQMWaYZ_RxGw0gF2PMBaW7aM_7FwBIOcsG6G3q2OnXx2dpO1MmMMr53XweZxhBOlHHlzWMxLyI6WTBzhOVVE1vnfHatCEJTrW-U27da-PUstbJex2eE9sFaxqjg7Nt3C37JtS46lsdatuqpg6rfbRTqcabg986RA9X0_vJDZ4trm8nFzOsKUDAacpNJjQRnOQkLauiAMqLMs21ERlXKdWioOMyj98UGcurkqSaGMMULzSptGJDdLTR7Zx97Y0P8sX2Lt7gJc0EI4wyziOKblDaWe-dqWTn6qVyK0lArv2VG39l9Ff--CtJJLENyUdw-2Tcn_Q_rG-TFn4r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853132344</pqid></control><display><type>article</type><title>Er3+–doped 0.94KNN–0.06Ca(Bi0.5Nb0.5)O3: a fluorescent transparent ceramic with optoelectronic multi-functionality</title><source>SpringerNature Journals</source><creator>Shi, Shaoyang ; Wu, Huangtao ; Liu, Xiang ; Wang, Hua ; Xu, Jiwen ; Yang, Ling ; Qiu, Wei</creator><creatorcontrib>Shi, Shaoyang ; Wu, Huangtao ; Liu, Xiang ; Wang, Hua ; Xu, Jiwen ; Yang, Ling ; Qiu, Wei</creatorcontrib><description>In this work, 0.94(K
0.5
Na
0.5
)NbO
3
–0.06Ca(Bi
0.5
Nb
0.5
)O
3
–
x
wt%Er
3+
(
x
= 0, 0.1, 0.2, 0.3, 0.4) fluorescent transparent ceramics were prepared using traditional solid-phase method. The ceramics are of pseudo-cubic phase, and the average grain size of ceramic reaches the nanometer level. The results show that when
x
= 0.1, high transmittance of 74.85 and 77.10% are achieved at 780 nm (visible region) and 1100 nm (near-infrared region) respectively. Meanwhile, the ceramic samples have good up-conversion luminescence performance, with green emission at 530 and 550 nm, and red emission at 660 nm. In addition, the maximum dielectric constant of 1030 is obtained at
x
= 0.3. In this paper, a highly transparent, versatile, and environmentally friendly ceramic was designed. It provides a useful reference for the development of transparent memory devices, transfer capacitors, or sensors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11114-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Dielectric properties ; Embryos ; Emission spectra ; Fluorescence ; Grain growth ; Grain size ; Materials Science ; Memory devices ; Optical and Electronic Materials ; Optoelectronics ; Particle size ; Phase transitions ; Polyvinyl alcohol ; Scanning electron microscopy ; Solid phases ; Symmetry</subject><ispartof>Journal of materials science. Materials in electronics, 2023-08, Vol.34 (23), p.1691, Article 1691</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-664e85c1541916dfbb024bd69ce584a62c5b27d9006b839fd16c1ee3a4bc1fca3</cites><orcidid>0000-0003-0170-9719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11114-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11114-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shi, Shaoyang</creatorcontrib><creatorcontrib>Wu, Huangtao</creatorcontrib><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Xu, Jiwen</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Qiu, Wei</creatorcontrib><title>Er3+–doped 0.94KNN–0.06Ca(Bi0.5Nb0.5)O3: a fluorescent transparent ceramic with optoelectronic multi-functionality</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, 0.94(K
0.5
Na
0.5
)NbO
3
–0.06Ca(Bi
0.5
Nb
0.5
)O
3
–
x
wt%Er
3+
(
x
= 0, 0.1, 0.2, 0.3, 0.4) fluorescent transparent ceramics were prepared using traditional solid-phase method. The ceramics are of pseudo-cubic phase, and the average grain size of ceramic reaches the nanometer level. The results show that when
x
= 0.1, high transmittance of 74.85 and 77.10% are achieved at 780 nm (visible region) and 1100 nm (near-infrared region) respectively. Meanwhile, the ceramic samples have good up-conversion luminescence performance, with green emission at 530 and 550 nm, and red emission at 660 nm. In addition, the maximum dielectric constant of 1030 is obtained at
x
= 0.3. In this paper, a highly transparent, versatile, and environmentally friendly ceramic was designed. It provides a useful reference for the development of transparent memory devices, transfer capacitors, or sensors.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Dielectric properties</subject><subject>Embryos</subject><subject>Emission spectra</subject><subject>Fluorescence</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Memory devices</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>Polyvinyl alcohol</subject><subject>Scanning electron microscopy</subject><subject>Solid phases</subject><subject>Symmetry</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcIrEBYRc1q804QZVeYiqvYDEzXIcB4LSONgOqDf-gT_kS3ApEjf2sC_NjHYHoUMCIwIwPvMEMsExUIZJDI7JFhoQMWaYZ_RxGw0gF2PMBaW7aM_7FwBIOcsG6G3q2OnXx2dpO1MmMMr53XweZxhBOlHHlzWMxLyI6WTBzhOVVE1vnfHatCEJTrW-U27da-PUstbJex2eE9sFaxqjg7Nt3C37JtS46lsdatuqpg6rfbRTqcabg986RA9X0_vJDZ4trm8nFzOsKUDAacpNJjQRnOQkLauiAMqLMs21ERlXKdWioOMyj98UGcurkqSaGMMULzSptGJDdLTR7Zx97Y0P8sX2Lt7gJc0EI4wyziOKblDaWe-dqWTn6qVyK0lArv2VG39l9Ff--CtJJLENyUdw-2Tcn_Q_rG-TFn4r</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Shi, Shaoyang</creator><creator>Wu, Huangtao</creator><creator>Liu, Xiang</creator><creator>Wang, Hua</creator><creator>Xu, Jiwen</creator><creator>Yang, Ling</creator><creator>Qiu, Wei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0170-9719</orcidid></search><sort><creationdate>20230801</creationdate><title>Er3+–doped 0.94KNN–0.06Ca(Bi0.5Nb0.5)O3: a fluorescent transparent ceramic with optoelectronic multi-functionality</title><author>Shi, Shaoyang ; Wu, Huangtao ; Liu, Xiang ; Wang, Hua ; Xu, Jiwen ; Yang, Ling ; Qiu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-664e85c1541916dfbb024bd69ce584a62c5b27d9006b839fd16c1ee3a4bc1fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Dielectric properties</topic><topic>Embryos</topic><topic>Emission spectra</topic><topic>Fluorescence</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Memory devices</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>Polyvinyl alcohol</topic><topic>Scanning electron microscopy</topic><topic>Solid phases</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Shaoyang</creatorcontrib><creatorcontrib>Wu, Huangtao</creatorcontrib><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Xu, Jiwen</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Qiu, Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Shaoyang</au><au>Wu, Huangtao</au><au>Liu, Xiang</au><au>Wang, Hua</au><au>Xu, Jiwen</au><au>Yang, Ling</au><au>Qiu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Er3+–doped 0.94KNN–0.06Ca(Bi0.5Nb0.5)O3: a fluorescent transparent ceramic with optoelectronic multi-functionality</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>23</issue><spage>1691</spage><pages>1691-</pages><artnum>1691</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, 0.94(K
0.5
Na
0.5
)NbO
3
–0.06Ca(Bi
0.5
Nb
0.5
)O
3
–
x
wt%Er
3+
(
x
= 0, 0.1, 0.2, 0.3, 0.4) fluorescent transparent ceramics were prepared using traditional solid-phase method. The ceramics are of pseudo-cubic phase, and the average grain size of ceramic reaches the nanometer level. The results show that when
x
= 0.1, high transmittance of 74.85 and 77.10% are achieved at 780 nm (visible region) and 1100 nm (near-infrared region) respectively. Meanwhile, the ceramic samples have good up-conversion luminescence performance, with green emission at 530 and 550 nm, and red emission at 660 nm. In addition, the maximum dielectric constant of 1030 is obtained at
x
= 0.3. In this paper, a highly transparent, versatile, and environmentally friendly ceramic was designed. It provides a useful reference for the development of transparent memory devices, transfer capacitors, or sensors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11114-1</doi><orcidid>https://orcid.org/0000-0003-0170-9719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-08, Vol.34 (23), p.1691, Article 1691 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2853132344 |
source | SpringerNature Journals |
subjects | Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Crystal structure Dielectric properties Embryos Emission spectra Fluorescence Grain growth Grain size Materials Science Memory devices Optical and Electronic Materials Optoelectronics Particle size Phase transitions Polyvinyl alcohol Scanning electron microscopy Solid phases Symmetry |
title | Er3+–doped 0.94KNN–0.06Ca(Bi0.5Nb0.5)O3: a fluorescent transparent ceramic with optoelectronic multi-functionality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Er3+%E2%80%93doped%200.94KNN%E2%80%930.06Ca(Bi0.5Nb0.5)O3:%20a%20fluorescent%20transparent%20ceramic%20with%20optoelectronic%20multi-functionality&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Shi,%20Shaoyang&rft.date=2023-08-01&rft.volume=34&rft.issue=23&rft.spage=1691&rft.pages=1691-&rft.artnum=1691&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11114-1&rft_dat=%3Cproquest_cross%3E2853132344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853132344&rft_id=info:pmid/&rfr_iscdi=true |