Correction: Random reordering in SOR-type methods

My joint paper (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7 ) with W. Zhou contains two errors which concern the derivation of some auxiliary norm estimates of the lower triangular projection for positive semi-definite Hermitean matrices in dependence on coor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2023, Vol.154 (3-4), p.521-525
Hauptverfasser: Oswald, Peter, Zhou, Weiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 525
container_issue 3-4
container_start_page 521
container_title Numerische Mathematik
container_volume 154
creator Oswald, Peter
Zhou, Weiqi
description My joint paper (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7 ) with W. Zhou contains two errors which concern the derivation of some auxiliary norm estimates of the lower triangular projection for positive semi-definite Hermitean matrices in dependence on coordinate permutations. These errors are corrected. The main results of Oswald and Zhou (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7 ) about the convergence behavior of so-called shuffled and preshuffled SOR iterations are not affected.
doi_str_mv 10.1007/s00211-023-01365-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853052306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853052306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1599-72e192c0cc183bd4a62b83a25b3456aefca1933136a81f890527ddd7afcaed8b3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpGkbb7LoKiwsrAreQpqk2sU2Neke9t-btYI3TzMw772Z-Qi5RLhGgPImAjBECoxTQF4IKo_IDGQuKGe5OE49MEmFlG-n5CzGLQCWRY4zggsfgjNj6_vbbKN767ssOB-sC23_nrV99rze0HE_uKxz44e38ZycNPozuovfOievD_cvi0e6Wi-fFncrajDtoSVzKJkBY7Ditc11weqKayZqnotCu8ZolJynY3WFTSVBsNJaW-o0cLaq-ZxcTblD8F87F0e19bvQp5WKVYInPYciqdikMsHHGFyjhtB2OuwVgjqgURMaldCoHzRKJhOfTHE4fOnCX_Q_rm80w2VI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853052306</pqid></control><display><type>article</type><title>Correction: Random reordering in SOR-type methods</title><source>Springer Nature - Complete Springer Journals</source><creator>Oswald, Peter ; Zhou, Weiqi</creator><creatorcontrib>Oswald, Peter ; Zhou, Weiqi</creatorcontrib><description>My joint paper (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7 ) with W. Zhou contains two errors which concern the derivation of some auxiliary norm estimates of the lower triangular projection for positive semi-definite Hermitean matrices in dependence on coordinate permutations. These errors are corrected. The main results of Oswald and Zhou (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7 ) about the convergence behavior of so-called shuffled and preshuffled SOR iterations are not affected.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-023-01365-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Correction ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2023, Vol.154 (3-4), p.521-525</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1599-72e192c0cc183bd4a62b83a25b3456aefca1933136a81f890527ddd7afcaed8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-023-01365-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-023-01365-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Oswald, Peter</creatorcontrib><creatorcontrib>Zhou, Weiqi</creatorcontrib><title>Correction: Random reordering in SOR-type methods</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>My joint paper (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7 ) with W. Zhou contains two errors which concern the derivation of some auxiliary norm estimates of the lower triangular projection for positive semi-definite Hermitean matrices in dependence on coordinate permutations. These errors are corrected. The main results of Oswald and Zhou (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7 ) about the convergence behavior of so-called shuffled and preshuffled SOR iterations are not affected.</description><subject>Correction</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpGkbb7LoKiwsrAreQpqk2sU2Neke9t-btYI3TzMw772Z-Qi5RLhGgPImAjBECoxTQF4IKo_IDGQuKGe5OE49MEmFlG-n5CzGLQCWRY4zggsfgjNj6_vbbKN767ssOB-sC23_nrV99rze0HE_uKxz44e38ZycNPozuovfOievD_cvi0e6Wi-fFncrajDtoSVzKJkBY7Ditc11weqKayZqnotCu8ZolJynY3WFTSVBsNJaW-o0cLaq-ZxcTblD8F87F0e19bvQp5WKVYInPYciqdikMsHHGFyjhtB2OuwVgjqgURMaldCoHzRKJhOfTHE4fOnCX_Q_rm80w2VI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Oswald, Peter</creator><creator>Zhou, Weiqi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Correction: Random reordering in SOR-type methods</title><author>Oswald, Peter ; Zhou, Weiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1599-72e192c0cc183bd4a62b83a25b3456aefca1933136a81f890527ddd7afcaed8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Correction</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oswald, Peter</creatorcontrib><creatorcontrib>Zhou, Weiqi</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oswald, Peter</au><au>Zhou, Weiqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction: Random reordering in SOR-type methods</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2023</date><risdate>2023</risdate><volume>154</volume><issue>3-4</issue><spage>521</spage><epage>525</epage><pages>521-525</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>My joint paper (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7 ) with W. Zhou contains two errors which concern the derivation of some auxiliary norm estimates of the lower triangular projection for positive semi-definite Hermitean matrices in dependence on coordinate permutations. These errors are corrected. The main results of Oswald and Zhou (Numerische Mathematik 135:1207–1220, 2017. https://doi.org/10.1007/s00211-016-0829-7 ) about the convergence behavior of so-called shuffled and preshuffled SOR iterations are not affected.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-023-01365-9</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2023, Vol.154 (3-4), p.521-525
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2853052306
source Springer Nature - Complete Springer Journals
subjects Correction
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
title Correction: Random reordering in SOR-type methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction:%20Random%20reordering%20in%20SOR-type%20methods&rft.jtitle=Numerische%20Mathematik&rft.au=Oswald,%20Peter&rft.date=2023&rft.volume=154&rft.issue=3-4&rft.spage=521&rft.epage=525&rft.pages=521-525&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-023-01365-9&rft_dat=%3Cproquest_cross%3E2853052306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853052306&rft_id=info:pmid/&rfr_iscdi=true