A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application

This paper considers the modeling problem of the weekly number of districts with new cases of cryptosporidiosis infection, and proposes a covariate-driven beta-binomial integer-valued GARCH model with a logit transformation to illustrate such bounded integer-valued time series data with extra-binomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrika 2023-10, Vol.86 (7), p.805-826
Hauptverfasser: Chen, Huaping, Li, Qi, Zhu, Fukang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 826
container_issue 7
container_start_page 805
container_title Metrika
container_volume 86
creator Chen, Huaping
Li, Qi
Zhu, Fukang
description This paper considers the modeling problem of the weekly number of districts with new cases of cryptosporidiosis infection, and proposes a covariate-driven beta-binomial integer-valued GARCH model with a logit transformation to illustrate such bounded integer-valued time series data with extra-binomial variation and high volatility. We establish the existence of the stationary and ergodic solution by imposing a contraction condition on its conditional mean process and a Markov structure on the incorporated covariate process, consider the conditional maximum likelihood (CML) estimator for the parameter vector and discuss its asymptotic properties, conduct a simulation study to examine the finite sample performance of the CML estimator for the proposed model with three data generating mechanisms of the covariate process. Finally, an application to the weekly number of districts with new cases of cryptosporidiosis infection is considered to illustrate the superior performance of the proposed model.
doi_str_mv 10.1007/s00184-023-00894-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853052274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853052274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-1315c85cf6cd2d6200692c638a5ed78680807db34bc9ce264f93fc2e5f5008133</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPAczSbbLLZYynaCgVBFLyFbJLVlG1Sk2zFf290BW-eBob33sz7ALis8HWFcXOTMK5EjTChCGPR1ogdgVlVU4Zawl-OwQxjwlFFKTsFZylti7zhhMxAt4A6HFR0KltkojtYDzubFeqcDzunBuh8tq82ooMaRmvgavG4XMNdMHaAfYiwC6M3Za_LzAl-uPwGlYdqvx-cVtkFfw5OejUke_E75-D57vZpuUabh9X9crFBmjKSy3MV04LpnmtDDCcY85ZoToVi1jSCCyxwYzpad7rVlvC6b2mviWU9K5VLtTm4mnL3MbyPNmW5DWP05aQkglHMCGnqoiKTSseQUrS93Ee3U_FTVlh-s5QTS1lYyh-WkhUTnUypiH2h8Rf9j-sL6uF2pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853052274</pqid></control><display><type>article</type><title>A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Huaping ; Li, Qi ; Zhu, Fukang</creator><creatorcontrib>Chen, Huaping ; Li, Qi ; Zhu, Fukang</creatorcontrib><description>This paper considers the modeling problem of the weekly number of districts with new cases of cryptosporidiosis infection, and proposes a covariate-driven beta-binomial integer-valued GARCH model with a logit transformation to illustrate such bounded integer-valued time series data with extra-binomial variation and high volatility. We establish the existence of the stationary and ergodic solution by imposing a contraction condition on its conditional mean process and a Markov structure on the incorporated covariate process, consider the conditional maximum likelihood (CML) estimator for the parameter vector and discuss its asymptotic properties, conduct a simulation study to examine the finite sample performance of the CML estimator for the proposed model with three data generating mechanisms of the covariate process. Finally, an application to the weekly number of districts with new cases of cryptosporidiosis infection is considered to illustrate the superior performance of the proposed model.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-023-00894-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Autoregressive models ; Economic Theory/Quantitative Economics/Mathematical Methods ; Integers ; Mathematics and Statistics ; Maximum likelihood estimators ; Probability Theory and Stochastic Processes ; Series (mathematics) ; Statistics</subject><ispartof>Metrika, 2023-10, Vol.86 (7), p.805-826</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-1315c85cf6cd2d6200692c638a5ed78680807db34bc9ce264f93fc2e5f5008133</citedby><cites>FETCH-LOGICAL-c352t-1315c85cf6cd2d6200692c638a5ed78680807db34bc9ce264f93fc2e5f5008133</cites><orcidid>0000-0002-0201-5631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00184-023-00894-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00184-023-00894-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chen, Huaping</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Zhu, Fukang</creatorcontrib><title>A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application</title><title>Metrika</title><addtitle>Metrika</addtitle><description>This paper considers the modeling problem of the weekly number of districts with new cases of cryptosporidiosis infection, and proposes a covariate-driven beta-binomial integer-valued GARCH model with a logit transformation to illustrate such bounded integer-valued time series data with extra-binomial variation and high volatility. We establish the existence of the stationary and ergodic solution by imposing a contraction condition on its conditional mean process and a Markov structure on the incorporated covariate process, consider the conditional maximum likelihood (CML) estimator for the parameter vector and discuss its asymptotic properties, conduct a simulation study to examine the finite sample performance of the CML estimator for the proposed model with three data generating mechanisms of the covariate process. Finally, an application to the weekly number of districts with new cases of cryptosporidiosis infection is considered to illustrate the superior performance of the proposed model.</description><subject>Asymptotic properties</subject><subject>Autoregressive models</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Integers</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimators</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Series (mathematics)</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFPAczSbbLLZYynaCgVBFLyFbJLVlG1Sk2zFf290BW-eBob33sz7ALis8HWFcXOTMK5EjTChCGPR1ogdgVlVU4Zawl-OwQxjwlFFKTsFZylti7zhhMxAt4A6HFR0KltkojtYDzubFeqcDzunBuh8tq82ooMaRmvgavG4XMNdMHaAfYiwC6M3Za_LzAl-uPwGlYdqvx-cVtkFfw5OejUke_E75-D57vZpuUabh9X9crFBmjKSy3MV04LpnmtDDCcY85ZoToVi1jSCCyxwYzpad7rVlvC6b2mviWU9K5VLtTm4mnL3MbyPNmW5DWP05aQkglHMCGnqoiKTSseQUrS93Ee3U_FTVlh-s5QTS1lYyh-WkhUTnUypiH2h8Rf9j-sL6uF2pA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Chen, Huaping</creator><creator>Li, Qi</creator><creator>Zhu, Fukang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0201-5631</orcidid></search><sort><creationdate>20231001</creationdate><title>A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application</title><author>Chen, Huaping ; Li, Qi ; Zhu, Fukang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-1315c85cf6cd2d6200692c638a5ed78680807db34bc9ce264f93fc2e5f5008133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Autoregressive models</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Integers</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimators</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Series (mathematics)</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huaping</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Zhu, Fukang</creatorcontrib><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huaping</au><au>Li, Qi</au><au>Zhu, Fukang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>86</volume><issue>7</issue><spage>805</spage><epage>826</epage><pages>805-826</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>This paper considers the modeling problem of the weekly number of districts with new cases of cryptosporidiosis infection, and proposes a covariate-driven beta-binomial integer-valued GARCH model with a logit transformation to illustrate such bounded integer-valued time series data with extra-binomial variation and high volatility. We establish the existence of the stationary and ergodic solution by imposing a contraction condition on its conditional mean process and a Markov structure on the incorporated covariate process, consider the conditional maximum likelihood (CML) estimator for the parameter vector and discuss its asymptotic properties, conduct a simulation study to examine the finite sample performance of the CML estimator for the proposed model with three data generating mechanisms of the covariate process. Finally, an application to the weekly number of districts with new cases of cryptosporidiosis infection is considered to illustrate the superior performance of the proposed model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00184-023-00894-5</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0201-5631</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-1335
ispartof Metrika, 2023-10, Vol.86 (7), p.805-826
issn 0026-1335
1435-926X
language eng
recordid cdi_proquest_journals_2853052274
source SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Autoregressive models
Economic Theory/Quantitative Economics/Mathematical Methods
Integers
Mathematics and Statistics
Maximum likelihood estimators
Probability Theory and Stochastic Processes
Series (mathematics)
Statistics
title A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20covariate-driven%20beta-binomial%20integer-valued%20GARCH%20model%20for%20bounded%20counts%20with%20an%20application&rft.jtitle=Metrika&rft.au=Chen,%20Huaping&rft.date=2023-10-01&rft.volume=86&rft.issue=7&rft.spage=805&rft.epage=826&rft.pages=805-826&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-023-00894-5&rft_dat=%3Cproquest_cross%3E2853052274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853052274&rft_id=info:pmid/&rfr_iscdi=true