Stability Analysis of Periodic Solutions of Bonhoeffer–Van Der Pol System with Applied Impulse
In this paper, the stability analysis of periodic solutions of Bonhoeffer–van der Pol system with applied impulse was investigated using Lyapunov direct method. Through the use of appropriate values of the control parameters, three equilibria points and periodic solutions of the system were obtained...
Gespeichert in:
Veröffentlicht in: | International journal of applied and computational mathematics 2023-10, Vol.9 (5), Article 62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | International journal of applied and computational mathematics |
container_volume | 9 |
creator | Eze, Everestus Obinwanne Obasi, Uchenna Emmanuel Urama, Thomas Chinwe |
description | In this paper, the stability analysis of periodic solutions of Bonhoeffer–van der Pol system with applied impulse was investigated using Lyapunov direct method. Through the use of appropriate values of the control parameters, three equilibria points and periodic solutions of the system were obtained. A Lyapunov candidate which depended on the parameters was constructed. Hence, we concluded that the equilibria points have different regions of stability and instability of the system in which the two regions were found to be stable and the other region was unstable. Furthermore, Mathcad software was used to analyze the behavior of the system, thereby improving known results in literature. |
doi_str_mv | 10.1007/s40819-023-01531-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853052246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853052246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1855-ec8ae577883704e7e6d6bee3d24faf959c0482df126bb14d94be5656eb9c0b093</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsNS-gKsB19H5TSbLWv8KBQtVt2N-buyUNBNnEiQ738E39EkcjeDO1T3ce86B-yF0Ssk5JSS58IIomkaE8YhQyWkkD9CE0TSNZJLGh0FzETQl_BjNvN8RQhgVCWFqgp43XZab2nQDnjdZPXjjsa3wGpyxpSnwxtZ9Z2zzs720zdZCVYH7fP94yhp8BQ6vbY03g-9gj99Mt8Xztq0NlHi5b_vawwk6qrIwZ79zih5vrh8Wd9Hq_na5mK-igiopIyhUBjJJlOIJEZBAXMY5AC-ZqLIqlWlBhGJlRVmc51SUqchBxjKGPFxykvIpOht7W2dfe_Cd3tnehZe8ZkpyIhkTcXCx0VU4672DSrfO7DM3aEr0N0w9wtQBpv6BqWUI8THkg7l5AfdX_U_qC20LeC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853052246</pqid></control><display><type>article</type><title>Stability Analysis of Periodic Solutions of Bonhoeffer–Van Der Pol System with Applied Impulse</title><source>SpringerLink Journals</source><creator>Eze, Everestus Obinwanne ; Obasi, Uchenna Emmanuel ; Urama, Thomas Chinwe</creator><creatorcontrib>Eze, Everestus Obinwanne ; Obasi, Uchenna Emmanuel ; Urama, Thomas Chinwe</creatorcontrib><description>In this paper, the stability analysis of periodic solutions of Bonhoeffer–van der Pol system with applied impulse was investigated using Lyapunov direct method. Through the use of appropriate values of the control parameters, three equilibria points and periodic solutions of the system were obtained. A Lyapunov candidate which depended on the parameters was constructed. Hence, we concluded that the equilibria points have different regions of stability and instability of the system in which the two regions were found to be stable and the other region was unstable. Furthermore, Mathcad software was used to analyze the behavior of the system, thereby improving known results in literature.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-023-01531-5</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Liapunov direct method ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Parameters ; Stability analysis ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2023-10, Vol.9 (5), Article 62</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1855-ec8ae577883704e7e6d6bee3d24faf959c0482df126bb14d94be5656eb9c0b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-023-01531-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-023-01531-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Eze, Everestus Obinwanne</creatorcontrib><creatorcontrib>Obasi, Uchenna Emmanuel</creatorcontrib><creatorcontrib>Urama, Thomas Chinwe</creatorcontrib><title>Stability Analysis of Periodic Solutions of Bonhoeffer–Van Der Pol System with Applied Impulse</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>In this paper, the stability analysis of periodic solutions of Bonhoeffer–van der Pol system with applied impulse was investigated using Lyapunov direct method. Through the use of appropriate values of the control parameters, three equilibria points and periodic solutions of the system were obtained. A Lyapunov candidate which depended on the parameters was constructed. Hence, we concluded that the equilibria points have different regions of stability and instability of the system in which the two regions were found to be stable and the other region was unstable. Furthermore, Mathcad software was used to analyze the behavior of the system, thereby improving known results in literature.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Liapunov direct method</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Stability analysis</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsNS-gKsB19H5TSbLWv8KBQtVt2N-buyUNBNnEiQ738E39EkcjeDO1T3ce86B-yF0Ssk5JSS58IIomkaE8YhQyWkkD9CE0TSNZJLGh0FzETQl_BjNvN8RQhgVCWFqgp43XZab2nQDnjdZPXjjsa3wGpyxpSnwxtZ9Z2zzs720zdZCVYH7fP94yhp8BQ6vbY03g-9gj99Mt8Xztq0NlHi5b_vawwk6qrIwZ79zih5vrh8Wd9Hq_na5mK-igiopIyhUBjJJlOIJEZBAXMY5AC-ZqLIqlWlBhGJlRVmc51SUqchBxjKGPFxykvIpOht7W2dfe_Cd3tnehZe8ZkpyIhkTcXCx0VU4672DSrfO7DM3aEr0N0w9wtQBpv6BqWUI8THkg7l5AfdX_U_qC20LeC8</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Eze, Everestus Obinwanne</creator><creator>Obasi, Uchenna Emmanuel</creator><creator>Urama, Thomas Chinwe</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Stability Analysis of Periodic Solutions of Bonhoeffer–Van Der Pol System with Applied Impulse</title><author>Eze, Everestus Obinwanne ; Obasi, Uchenna Emmanuel ; Urama, Thomas Chinwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1855-ec8ae577883704e7e6d6bee3d24faf959c0482df126bb14d94be5656eb9c0b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Liapunov direct method</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Stability analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eze, Everestus Obinwanne</creatorcontrib><creatorcontrib>Obasi, Uchenna Emmanuel</creatorcontrib><creatorcontrib>Urama, Thomas Chinwe</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eze, Everestus Obinwanne</au><au>Obasi, Uchenna Emmanuel</au><au>Urama, Thomas Chinwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Analysis of Periodic Solutions of Bonhoeffer–Van Der Pol System with Applied Impulse</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>9</volume><issue>5</issue><artnum>62</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>In this paper, the stability analysis of periodic solutions of Bonhoeffer–van der Pol system with applied impulse was investigated using Lyapunov direct method. Through the use of appropriate values of the control parameters, three equilibria points and periodic solutions of the system were obtained. A Lyapunov candidate which depended on the parameters was constructed. Hence, we concluded that the equilibria points have different regions of stability and instability of the system in which the two regions were found to be stable and the other region was unstable. Furthermore, Mathcad software was used to analyze the behavior of the system, thereby improving known results in literature.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-023-01531-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2023-10, Vol.9 (5), Article 62 |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2853052246 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Applied mathematics Computational mathematics Computational Science and Engineering Liapunov direct method Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Parameters Stability analysis Theoretical |
title | Stability Analysis of Periodic Solutions of Bonhoeffer–Van Der Pol System with Applied Impulse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Analysis%20of%20Periodic%20Solutions%20of%20Bonhoeffer%E2%80%93Van%20Der%20Pol%20System%20with%20Applied%20Impulse&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Eze,%20Everestus%20Obinwanne&rft.date=2023-10-01&rft.volume=9&rft.issue=5&rft.artnum=62&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-023-01531-5&rft_dat=%3Cproquest_cross%3E2853052246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853052246&rft_id=info:pmid/&rfr_iscdi=true |