New Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomials
We introduce new versions of uniformly convex functions, namely h d strongly (weaker) convex functions. Based on the positivity of complete homogeneous symmetric polynomials with even degree, recently studied in Rovenţa and Temereanc (Mediterr J Math 16:1–16, 2019), Rovenţa et al. (A note on weighte...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2023-10, Vol.20 (5), Article 279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Mediterranean journal of mathematics |
container_volume | 20 |
creator | Lăchescu, Geanina Maria Malin, Maria Rovenţa, Ionel |
description | We introduce new versions of uniformly convex functions, namely
h
d
strongly (weaker) convex functions. Based on the positivity of complete homogeneous symmetric polynomials with even degree, recently studied in Rovenţa and Temereanc (Mediterr J Math 16:1–16, 2019), Rovenţa et al. (A note on weighted Ingham’s inequality for families of exponentials with no gap, In: 24th ICSTCC, pp 43–48, 2020; Weighted Ingham’s type inequalities via the positivity of quadratic polynomials, submitted), and Tao (
https://terrytao.wordpress.com/2017/08/06/schur-convexity-and-positive-definiteness-of-the-even-degree-co-mplete-homogeneous-symmetric-polynomials/
), we introduce stronger and weaker versions of uniformly convexity. In this context, we recover well-known type inequalities such as: Jensen’s, Hardy–Littlewood–Polya’s and Popoviciu’s inequalities. Some final remarks related to Sherman’s and Ingham’s type inequalities are also discussed. |
doi_str_mv | 10.1007/s00009-023-02484-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853052196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2853052196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2ed3c0e43c6dc45a63c6969b750a72da75faf16430f93fe1a1786f98705944a43</originalsourceid><addsrcrecordid>eNp9UFtLwzAUDqLgnP4BnwI-V3Nv-yjDOWF4QedriGkyOtpkJu20_964ir554HA--C4HPgDOMbrECOVXEaUpM0RoWlawDB-ACRYCZZxxdviLmTgGJzFuECIlpmQC9L35gK8mxNq7CL2FK1dbH9pmgDPvduYTznunuz27qxV86lUVVFfrRLfbxnQGLnzr18YZ30f4PLSt6UKiH30zON_Wqomn4MimY85-7hSs5jcvs0W2fLi9m10vM01y1GXEVFQjw6gWlWZciQRKUb7lHKmcVCrnVlksGEW2pNZghfNC2LLIES8ZU4xOwcWYuw3-vTexkxvfB5deSlJwijjBpUgqMqp08DEGY-U21K0Kg8RIfpcpxzJlKlPuy5Q4mehoikns1ib8Rf_j-gK3aXgi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853052196</pqid></control><display><type>article</type><title>New Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lăchescu, Geanina Maria ; Malin, Maria ; Rovenţa, Ionel</creator><creatorcontrib>Lăchescu, Geanina Maria ; Malin, Maria ; Rovenţa, Ionel</creatorcontrib><description>We introduce new versions of uniformly convex functions, namely
h
d
strongly (weaker) convex functions. Based on the positivity of complete homogeneous symmetric polynomials with even degree, recently studied in Rovenţa and Temereanc (Mediterr J Math 16:1–16, 2019), Rovenţa et al. (A note on weighted Ingham’s inequality for families of exponentials with no gap, In: 24th ICSTCC, pp 43–48, 2020; Weighted Ingham’s type inequalities via the positivity of quadratic polynomials, submitted), and Tao (
https://terrytao.wordpress.com/2017/08/06/schur-convexity-and-positive-definiteness-of-the-even-degree-co-mplete-homogeneous-symmetric-polynomials/
), we introduce stronger and weaker versions of uniformly convexity. In this context, we recover well-known type inequalities such as: Jensen’s, Hardy–Littlewood–Polya’s and Popoviciu’s inequalities. Some final remarks related to Sherman’s and Ingham’s type inequalities are also discussed.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-023-02484-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Convexity ; Functions (mathematics) ; Inequalities ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Mediterranean journal of mathematics, 2023-10, Vol.20 (5), Article 279</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2ed3c0e43c6dc45a63c6969b750a72da75faf16430f93fe1a1786f98705944a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-023-02484-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-023-02484-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lăchescu, Geanina Maria</creatorcontrib><creatorcontrib>Malin, Maria</creatorcontrib><creatorcontrib>Rovenţa, Ionel</creatorcontrib><title>New Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomials</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>We introduce new versions of uniformly convex functions, namely
h
d
strongly (weaker) convex functions. Based on the positivity of complete homogeneous symmetric polynomials with even degree, recently studied in Rovenţa and Temereanc (Mediterr J Math 16:1–16, 2019), Rovenţa et al. (A note on weighted Ingham’s inequality for families of exponentials with no gap, In: 24th ICSTCC, pp 43–48, 2020; Weighted Ingham’s type inequalities via the positivity of quadratic polynomials, submitted), and Tao (
https://terrytao.wordpress.com/2017/08/06/schur-convexity-and-positive-definiteness-of-the-even-degree-co-mplete-homogeneous-symmetric-polynomials/
), we introduce stronger and weaker versions of uniformly convexity. In this context, we recover well-known type inequalities such as: Jensen’s, Hardy–Littlewood–Polya’s and Popoviciu’s inequalities. Some final remarks related to Sherman’s and Ingham’s type inequalities are also discussed.</description><subject>Convexity</subject><subject>Functions (mathematics)</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UFtLwzAUDqLgnP4BnwI-V3Nv-yjDOWF4QedriGkyOtpkJu20_964ir554HA--C4HPgDOMbrECOVXEaUpM0RoWlawDB-ACRYCZZxxdviLmTgGJzFuECIlpmQC9L35gK8mxNq7CL2FK1dbH9pmgDPvduYTznunuz27qxV86lUVVFfrRLfbxnQGLnzr18YZ30f4PLSt6UKiH30zON_Wqomn4MimY85-7hSs5jcvs0W2fLi9m10vM01y1GXEVFQjw6gWlWZciQRKUb7lHKmcVCrnVlksGEW2pNZghfNC2LLIES8ZU4xOwcWYuw3-vTexkxvfB5deSlJwijjBpUgqMqp08DEGY-U21K0Kg8RIfpcpxzJlKlPuy5Q4mehoikns1ib8Rf_j-gK3aXgi</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lăchescu, Geanina Maria</creator><creator>Malin, Maria</creator><creator>Rovenţa, Ionel</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>New Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomials</title><author>Lăchescu, Geanina Maria ; Malin, Maria ; Rovenţa, Ionel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2ed3c0e43c6dc45a63c6969b750a72da75faf16430f93fe1a1786f98705944a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convexity</topic><topic>Functions (mathematics)</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lăchescu, Geanina Maria</creatorcontrib><creatorcontrib>Malin, Maria</creatorcontrib><creatorcontrib>Rovenţa, Ionel</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lăchescu, Geanina Maria</au><au>Malin, Maria</au><au>Rovenţa, Ionel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomials</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><artnum>279</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>We introduce new versions of uniformly convex functions, namely
h
d
strongly (weaker) convex functions. Based on the positivity of complete homogeneous symmetric polynomials with even degree, recently studied in Rovenţa and Temereanc (Mediterr J Math 16:1–16, 2019), Rovenţa et al. (A note on weighted Ingham’s inequality for families of exponentials with no gap, In: 24th ICSTCC, pp 43–48, 2020; Weighted Ingham’s type inequalities via the positivity of quadratic polynomials, submitted), and Tao (
https://terrytao.wordpress.com/2017/08/06/schur-convexity-and-positive-definiteness-of-the-even-degree-co-mplete-homogeneous-symmetric-polynomials/
), we introduce stronger and weaker versions of uniformly convexity. In this context, we recover well-known type inequalities such as: Jensen’s, Hardy–Littlewood–Polya’s and Popoviciu’s inequalities. Some final remarks related to Sherman’s and Ingham’s type inequalities are also discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-023-02484-1</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-5446 |
ispartof | Mediterranean journal of mathematics, 2023-10, Vol.20 (5), Article 279 |
issn | 1660-5446 1660-5454 |
language | eng |
recordid | cdi_proquest_journals_2853052196 |
source | SpringerLink Journals - AutoHoldings |
subjects | Convexity Functions (mathematics) Inequalities Mathematical analysis Mathematics Mathematics and Statistics Polynomials |
title | New Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Versions%20of%20Uniformly%20Convex%20Functions%20via%20Quadratic%20Complete%20Homogeneous%20Symmetric%20Polynomials&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=L%C4%83chescu,%20Geanina%20Maria&rft.date=2023-10-01&rft.volume=20&rft.issue=5&rft.artnum=279&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-023-02484-1&rft_dat=%3Cproquest_cross%3E2853052196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853052196&rft_id=info:pmid/&rfr_iscdi=true |