Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer
Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel flu...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Hasan, Md Sadique Sundberg, Chad Hasan, Hasib Kostov, Yordan Ge, Xudong Choa, Fow-Sen Rao, Govind |
description | Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel fluorometer coupled with machine learning (ML) has been implemented in this study. Five different strains of bacterial samples were tested along with the negative control for time-series fluorescence data collection and analysis. We applied different conventional unsupervised and supervised machine learning techniques with extracted features followed by preprocessing of the data. Initially, machine learning algorithms were applied for the qualitative detection of bacteria by binary classification followed by regression analysis to predict the level of contamination for E. coli . The multiclass classification was used to identify gram-positive, and gram-negative bacterial strains and differentiate all the bacterial strains tested. Our results show that around 97.9% accuracy can be achieved for bacterial contamination detection for as low as 1 CFU/mL while 92.1% accuracy can be achieved for differentiating the gram-positive and gram-negative strains. Additionally, with 1 minute of data, high accuracy is obtained for detecting bioburden, proving the multichannel fluorometer's rapid detection capability. The multichannel fluorometer integrated with ML analytics is capable of automating data analysis and determining accurate and rapid bacterial detection on-site with the prediction of bioburden levels and differentiating bacterial strains and the protocol can be applied to the biosensors with a similar data type. |
doi_str_mv | 10.1109/ACCESS.2023.3303815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853026069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10213451</ieee_id><doaj_id>oai_doaj_org_article_c43414d2858649e38b54e2f1b22138a7</doaj_id><sourcerecordid>2853026069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-56e241d414d6b026f59449acf1bcf1bd94130bbfbaaafaacbfeee573fa567a833</originalsourceid><addsrcrecordid>eNpNUV2LEzEUHUTBZd1foA8Bn1vzOZ15XMqqCwuCq8_hJrlpU6ZJTTKI_8MfbNpZpIGQy-Gej3C67j2ja8bo-Ol-u314fl5zysVaCCoGpl51N5z140oo0b--mt92d6UcaDtDg9Tmpvv7HU7BEQO2Yg4wEYcVbQ0pEoiOBIexBh8sXKDkrzZLzRBiIXMJcUeOYPchIpkQcrwAWPfJFRJixV2Gio78DnVPgJxSrmAmJMd5qsHuIUaciJ_mlFNjYX7XvfEwFbx7eW-7n58ffmy_rp6-fXnc3j-trFBjXakeuWROMul6Q3nv1SjlCNYzc75ulExQY7wBAA9gjUdEtREeVL-BQYjb7nHRdQkO-pTDEfIfnSDoC5DyTkNuCSfUVoqzDx_U0MsRxWCURN5cOGdigE3T-rhonXL6NWOp-pDmHFt83UiixaP92LbEsmVzKiWj_-_KqD63qZc29blN_dJmY31YWKF94IrRrKVi4h_Kd5-M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853026069</pqid></control><display><type>article</type><title>Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hasan, Md Sadique ; Sundberg, Chad ; Hasan, Hasib ; Kostov, Yordan ; Ge, Xudong ; Choa, Fow-Sen ; Rao, Govind</creator><creatorcontrib>Hasan, Md Sadique ; Sundberg, Chad ; Hasan, Hasib ; Kostov, Yordan ; Ge, Xudong ; Choa, Fow-Sen ; Rao, Govind</creatorcontrib><description>Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel fluorometer coupled with machine learning (ML) has been implemented in this study. Five different strains of bacterial samples were tested along with the negative control for time-series fluorescence data collection and analysis. We applied different conventional unsupervised and supervised machine learning techniques with extracted features followed by preprocessing of the data. Initially, machine learning algorithms were applied for the qualitative detection of bacteria by binary classification followed by regression analysis to predict the level of contamination for E. coli . The multiclass classification was used to identify gram-positive, and gram-negative bacterial strains and differentiate all the bacterial strains tested. Our results show that around 97.9% accuracy can be achieved for bacterial contamination detection for as low as 1 CFU/mL while 92.1% accuracy can be achieved for differentiating the gram-positive and gram-negative strains. Additionally, with 1 minute of data, high accuracy is obtained for detecting bioburden, proving the multichannel fluorometer's rapid detection capability. The multichannel fluorometer integrated with ML analytics is capable of automating data analysis and determining accurate and rapid bacterial detection on-site with the prediction of bioburden levels and differentiating bacterial strains and the protocol can be applied to the biosensors with a similar data type.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3303815</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Bacteria ; Bioburden ; Biosensors ; Classification ; Contamination ; Data analysis ; Data collection ; E coli ; Feature extraction ; features ; Fluorescence ; Fluorometers ; Machine learning ; Machine learning algorithms ; Microorganisms ; Portability ; Prediction algorithms ; Public health ; Qualitative analysis ; Regression analysis ; Sampling methods ; Strain ; supervised algorithm ; Supervised learning ; Time series analysis ; time-series ; unsupervised algorithm</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-56e241d414d6b026f59449acf1bcf1bd94130bbfbaaafaacbfeee573fa567a833</cites><orcidid>0000-0001-9613-6110 ; 0000-0003-1733-398X ; 0009-0000-4719-9203 ; 0000-0001-6140-7582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10213451$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Hasan, Md Sadique</creatorcontrib><creatorcontrib>Sundberg, Chad</creatorcontrib><creatorcontrib>Hasan, Hasib</creatorcontrib><creatorcontrib>Kostov, Yordan</creatorcontrib><creatorcontrib>Ge, Xudong</creatorcontrib><creatorcontrib>Choa, Fow-Sen</creatorcontrib><creatorcontrib>Rao, Govind</creatorcontrib><title>Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer</title><title>IEEE access</title><addtitle>Access</addtitle><description>Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel fluorometer coupled with machine learning (ML) has been implemented in this study. Five different strains of bacterial samples were tested along with the negative control for time-series fluorescence data collection and analysis. We applied different conventional unsupervised and supervised machine learning techniques with extracted features followed by preprocessing of the data. Initially, machine learning algorithms were applied for the qualitative detection of bacteria by binary classification followed by regression analysis to predict the level of contamination for E. coli . The multiclass classification was used to identify gram-positive, and gram-negative bacterial strains and differentiate all the bacterial strains tested. Our results show that around 97.9% accuracy can be achieved for bacterial contamination detection for as low as 1 CFU/mL while 92.1% accuracy can be achieved for differentiating the gram-positive and gram-negative strains. Additionally, with 1 minute of data, high accuracy is obtained for detecting bioburden, proving the multichannel fluorometer's rapid detection capability. The multichannel fluorometer integrated with ML analytics is capable of automating data analysis and determining accurate and rapid bacterial detection on-site with the prediction of bioburden levels and differentiating bacterial strains and the protocol can be applied to the biosensors with a similar data type.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bacteria</subject><subject>Bioburden</subject><subject>Biosensors</subject><subject>Classification</subject><subject>Contamination</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>E coli</subject><subject>Feature extraction</subject><subject>features</subject><subject>Fluorescence</subject><subject>Fluorometers</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Microorganisms</subject><subject>Portability</subject><subject>Prediction algorithms</subject><subject>Public health</subject><subject>Qualitative analysis</subject><subject>Regression analysis</subject><subject>Sampling methods</subject><subject>Strain</subject><subject>supervised algorithm</subject><subject>Supervised learning</subject><subject>Time series analysis</subject><subject>time-series</subject><subject>unsupervised algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV2LEzEUHUTBZd1foA8Bn1vzOZ15XMqqCwuCq8_hJrlpU6ZJTTKI_8MfbNpZpIGQy-Gej3C67j2ja8bo-Ol-u314fl5zysVaCCoGpl51N5z140oo0b--mt92d6UcaDtDg9Tmpvv7HU7BEQO2Yg4wEYcVbQ0pEoiOBIexBh8sXKDkrzZLzRBiIXMJcUeOYPchIpkQcrwAWPfJFRJixV2Gio78DnVPgJxSrmAmJMd5qsHuIUaciJ_mlFNjYX7XvfEwFbx7eW-7n58ffmy_rp6-fXnc3j-trFBjXakeuWROMul6Q3nv1SjlCNYzc75ulExQY7wBAA9gjUdEtREeVL-BQYjb7nHRdQkO-pTDEfIfnSDoC5DyTkNuCSfUVoqzDx_U0MsRxWCURN5cOGdigE3T-rhonXL6NWOp-pDmHFt83UiixaP92LbEsmVzKiWj_-_KqD63qZc29blN_dJmY31YWKF94IrRrKVi4h_Kd5-M</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Hasan, Md Sadique</creator><creator>Sundberg, Chad</creator><creator>Hasan, Hasib</creator><creator>Kostov, Yordan</creator><creator>Ge, Xudong</creator><creator>Choa, Fow-Sen</creator><creator>Rao, Govind</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9613-6110</orcidid><orcidid>https://orcid.org/0000-0003-1733-398X</orcidid><orcidid>https://orcid.org/0009-0000-4719-9203</orcidid><orcidid>https://orcid.org/0000-0001-6140-7582</orcidid></search><sort><creationdate>20230101</creationdate><title>Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer</title><author>Hasan, Md Sadique ; Sundberg, Chad ; Hasan, Hasib ; Kostov, Yordan ; Ge, Xudong ; Choa, Fow-Sen ; Rao, Govind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-56e241d414d6b026f59449acf1bcf1bd94130bbfbaaafaacbfeee573fa567a833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bacteria</topic><topic>Bioburden</topic><topic>Biosensors</topic><topic>Classification</topic><topic>Contamination</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>E coli</topic><topic>Feature extraction</topic><topic>features</topic><topic>Fluorescence</topic><topic>Fluorometers</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Microorganisms</topic><topic>Portability</topic><topic>Prediction algorithms</topic><topic>Public health</topic><topic>Qualitative analysis</topic><topic>Regression analysis</topic><topic>Sampling methods</topic><topic>Strain</topic><topic>supervised algorithm</topic><topic>Supervised learning</topic><topic>Time series analysis</topic><topic>time-series</topic><topic>unsupervised algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Md Sadique</creatorcontrib><creatorcontrib>Sundberg, Chad</creatorcontrib><creatorcontrib>Hasan, Hasib</creatorcontrib><creatorcontrib>Kostov, Yordan</creatorcontrib><creatorcontrib>Ge, Xudong</creatorcontrib><creatorcontrib>Choa, Fow-Sen</creatorcontrib><creatorcontrib>Rao, Govind</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Md Sadique</au><au>Sundberg, Chad</au><au>Hasan, Hasib</au><au>Kostov, Yordan</au><au>Ge, Xudong</au><au>Choa, Fow-Sen</au><au>Rao, Govind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel fluorometer coupled with machine learning (ML) has been implemented in this study. Five different strains of bacterial samples were tested along with the negative control for time-series fluorescence data collection and analysis. We applied different conventional unsupervised and supervised machine learning techniques with extracted features followed by preprocessing of the data. Initially, machine learning algorithms were applied for the qualitative detection of bacteria by binary classification followed by regression analysis to predict the level of contamination for E. coli . The multiclass classification was used to identify gram-positive, and gram-negative bacterial strains and differentiate all the bacterial strains tested. Our results show that around 97.9% accuracy can be achieved for bacterial contamination detection for as low as 1 CFU/mL while 92.1% accuracy can be achieved for differentiating the gram-positive and gram-negative strains. Additionally, with 1 minute of data, high accuracy is obtained for detecting bioburden, proving the multichannel fluorometer's rapid detection capability. The multichannel fluorometer integrated with ML analytics is capable of automating data analysis and determining accurate and rapid bacterial detection on-site with the prediction of bioburden levels and differentiating bacterial strains and the protocol can be applied to the biosensors with a similar data type.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3303815</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9613-6110</orcidid><orcidid>https://orcid.org/0000-0003-1733-398X</orcidid><orcidid>https://orcid.org/0009-0000-4719-9203</orcidid><orcidid>https://orcid.org/0000-0001-6140-7582</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2853026069 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Bacteria Bioburden Biosensors Classification Contamination Data analysis Data collection E coli Feature extraction features Fluorescence Fluorometers Machine learning Machine learning algorithms Microorganisms Portability Prediction algorithms Public health Qualitative analysis Regression analysis Sampling methods Strain supervised algorithm Supervised learning Time series analysis time-series unsupervised algorithm |
title | Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20bacterial%20detection%20and%20identification%20of%20bacterial%20strains%20using%20machine%20learning%20methods%20integrated%20with%20a%20portable%20multichannel%20fluorometer&rft.jtitle=IEEE%20access&rft.au=Hasan,%20Md%20Sadique&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3303815&rft_dat=%3Cproquest_cross%3E2853026069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853026069&rft_id=info:pmid/&rft_ieee_id=10213451&rft_doaj_id=oai_doaj_org_article_c43414d2858649e38b54e2f1b22138a7&rfr_iscdi=true |