Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer

Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel flu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Hasan, Md Sadique, Sundberg, Chad, Hasan, Hasib, Kostov, Yordan, Ge, Xudong, Choa, Fow-Sen, Rao, Govind
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Hasan, Md Sadique
Sundberg, Chad
Hasan, Hasib
Kostov, Yordan
Ge, Xudong
Choa, Fow-Sen
Rao, Govind
description Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel fluorometer coupled with machine learning (ML) has been implemented in this study. Five different strains of bacterial samples were tested along with the negative control for time-series fluorescence data collection and analysis. We applied different conventional unsupervised and supervised machine learning techniques with extracted features followed by preprocessing of the data. Initially, machine learning algorithms were applied for the qualitative detection of bacteria by binary classification followed by regression analysis to predict the level of contamination for E. coli . The multiclass classification was used to identify gram-positive, and gram-negative bacterial strains and differentiate all the bacterial strains tested. Our results show that around 97.9% accuracy can be achieved for bacterial contamination detection for as low as 1 CFU/mL while 92.1% accuracy can be achieved for differentiating the gram-positive and gram-negative strains. Additionally, with 1 minute of data, high accuracy is obtained for detecting bioburden, proving the multichannel fluorometer's rapid detection capability. The multichannel fluorometer integrated with ML analytics is capable of automating data analysis and determining accurate and rapid bacterial detection on-site with the prediction of bioburden levels and differentiating bacterial strains and the protocol can be applied to the biosensors with a similar data type.
doi_str_mv 10.1109/ACCESS.2023.3303815
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2853026069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10213451</ieee_id><doaj_id>oai_doaj_org_article_c43414d2858649e38b54e2f1b22138a7</doaj_id><sourcerecordid>2853026069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-56e241d414d6b026f59449acf1bcf1bd94130bbfbaaafaacbfeee573fa567a833</originalsourceid><addsrcrecordid>eNpNUV2LEzEUHUTBZd1foA8Bn1vzOZ15XMqqCwuCq8_hJrlpU6ZJTTKI_8MfbNpZpIGQy-Gej3C67j2ja8bo-Ol-u314fl5zysVaCCoGpl51N5z140oo0b--mt92d6UcaDtDg9Tmpvv7HU7BEQO2Yg4wEYcVbQ0pEoiOBIexBh8sXKDkrzZLzRBiIXMJcUeOYPchIpkQcrwAWPfJFRJixV2Gio78DnVPgJxSrmAmJMd5qsHuIUaciJ_mlFNjYX7XvfEwFbx7eW-7n58ffmy_rp6-fXnc3j-trFBjXakeuWROMul6Q3nv1SjlCNYzc75ulExQY7wBAA9gjUdEtREeVL-BQYjb7nHRdQkO-pTDEfIfnSDoC5DyTkNuCSfUVoqzDx_U0MsRxWCURN5cOGdigE3T-rhonXL6NWOp-pDmHFt83UiixaP92LbEsmVzKiWj_-_KqD63qZc29blN_dJmY31YWKF94IrRrKVi4h_Kd5-M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853026069</pqid></control><display><type>article</type><title>Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hasan, Md Sadique ; Sundberg, Chad ; Hasan, Hasib ; Kostov, Yordan ; Ge, Xudong ; Choa, Fow-Sen ; Rao, Govind</creator><creatorcontrib>Hasan, Md Sadique ; Sundberg, Chad ; Hasan, Hasib ; Kostov, Yordan ; Ge, Xudong ; Choa, Fow-Sen ; Rao, Govind</creatorcontrib><description>Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel fluorometer coupled with machine learning (ML) has been implemented in this study. Five different strains of bacterial samples were tested along with the negative control for time-series fluorescence data collection and analysis. We applied different conventional unsupervised and supervised machine learning techniques with extracted features followed by preprocessing of the data. Initially, machine learning algorithms were applied for the qualitative detection of bacteria by binary classification followed by regression analysis to predict the level of contamination for E. coli . The multiclass classification was used to identify gram-positive, and gram-negative bacterial strains and differentiate all the bacterial strains tested. Our results show that around 97.9% accuracy can be achieved for bacterial contamination detection for as low as 1 CFU/mL while 92.1% accuracy can be achieved for differentiating the gram-positive and gram-negative strains. Additionally, with 1 minute of data, high accuracy is obtained for detecting bioburden, proving the multichannel fluorometer's rapid detection capability. The multichannel fluorometer integrated with ML analytics is capable of automating data analysis and determining accurate and rapid bacterial detection on-site with the prediction of bioburden levels and differentiating bacterial strains and the protocol can be applied to the biosensors with a similar data type.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3303815</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Bacteria ; Bioburden ; Biosensors ; Classification ; Contamination ; Data analysis ; Data collection ; E coli ; Feature extraction ; features ; Fluorescence ; Fluorometers ; Machine learning ; Machine learning algorithms ; Microorganisms ; Portability ; Prediction algorithms ; Public health ; Qualitative analysis ; Regression analysis ; Sampling methods ; Strain ; supervised algorithm ; Supervised learning ; Time series analysis ; time-series ; unsupervised algorithm</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-56e241d414d6b026f59449acf1bcf1bd94130bbfbaaafaacbfeee573fa567a833</cites><orcidid>0000-0001-9613-6110 ; 0000-0003-1733-398X ; 0009-0000-4719-9203 ; 0000-0001-6140-7582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10213451$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Hasan, Md Sadique</creatorcontrib><creatorcontrib>Sundberg, Chad</creatorcontrib><creatorcontrib>Hasan, Hasib</creatorcontrib><creatorcontrib>Kostov, Yordan</creatorcontrib><creatorcontrib>Ge, Xudong</creatorcontrib><creatorcontrib>Choa, Fow-Sen</creatorcontrib><creatorcontrib>Rao, Govind</creatorcontrib><title>Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer</title><title>IEEE access</title><addtitle>Access</addtitle><description>Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel fluorometer coupled with machine learning (ML) has been implemented in this study. Five different strains of bacterial samples were tested along with the negative control for time-series fluorescence data collection and analysis. We applied different conventional unsupervised and supervised machine learning techniques with extracted features followed by preprocessing of the data. Initially, machine learning algorithms were applied for the qualitative detection of bacteria by binary classification followed by regression analysis to predict the level of contamination for E. coli . The multiclass classification was used to identify gram-positive, and gram-negative bacterial strains and differentiate all the bacterial strains tested. Our results show that around 97.9% accuracy can be achieved for bacterial contamination detection for as low as 1 CFU/mL while 92.1% accuracy can be achieved for differentiating the gram-positive and gram-negative strains. Additionally, with 1 minute of data, high accuracy is obtained for detecting bioburden, proving the multichannel fluorometer's rapid detection capability. The multichannel fluorometer integrated with ML analytics is capable of automating data analysis and determining accurate and rapid bacterial detection on-site with the prediction of bioburden levels and differentiating bacterial strains and the protocol can be applied to the biosensors with a similar data type.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bacteria</subject><subject>Bioburden</subject><subject>Biosensors</subject><subject>Classification</subject><subject>Contamination</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>E coli</subject><subject>Feature extraction</subject><subject>features</subject><subject>Fluorescence</subject><subject>Fluorometers</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Microorganisms</subject><subject>Portability</subject><subject>Prediction algorithms</subject><subject>Public health</subject><subject>Qualitative analysis</subject><subject>Regression analysis</subject><subject>Sampling methods</subject><subject>Strain</subject><subject>supervised algorithm</subject><subject>Supervised learning</subject><subject>Time series analysis</subject><subject>time-series</subject><subject>unsupervised algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV2LEzEUHUTBZd1foA8Bn1vzOZ15XMqqCwuCq8_hJrlpU6ZJTTKI_8MfbNpZpIGQy-Gej3C67j2ja8bo-Ol-u314fl5zysVaCCoGpl51N5z140oo0b--mt92d6UcaDtDg9Tmpvv7HU7BEQO2Yg4wEYcVbQ0pEoiOBIexBh8sXKDkrzZLzRBiIXMJcUeOYPchIpkQcrwAWPfJFRJixV2Gio78DnVPgJxSrmAmJMd5qsHuIUaciJ_mlFNjYX7XvfEwFbx7eW-7n58ffmy_rp6-fXnc3j-trFBjXakeuWROMul6Q3nv1SjlCNYzc75ulExQY7wBAA9gjUdEtREeVL-BQYjb7nHRdQkO-pTDEfIfnSDoC5DyTkNuCSfUVoqzDx_U0MsRxWCURN5cOGdigE3T-rhonXL6NWOp-pDmHFt83UiixaP92LbEsmVzKiWj_-_KqD63qZc29blN_dJmY31YWKF94IrRrKVi4h_Kd5-M</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Hasan, Md Sadique</creator><creator>Sundberg, Chad</creator><creator>Hasan, Hasib</creator><creator>Kostov, Yordan</creator><creator>Ge, Xudong</creator><creator>Choa, Fow-Sen</creator><creator>Rao, Govind</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9613-6110</orcidid><orcidid>https://orcid.org/0000-0003-1733-398X</orcidid><orcidid>https://orcid.org/0009-0000-4719-9203</orcidid><orcidid>https://orcid.org/0000-0001-6140-7582</orcidid></search><sort><creationdate>20230101</creationdate><title>Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer</title><author>Hasan, Md Sadique ; Sundberg, Chad ; Hasan, Hasib ; Kostov, Yordan ; Ge, Xudong ; Choa, Fow-Sen ; Rao, Govind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-56e241d414d6b026f59449acf1bcf1bd94130bbfbaaafaacbfeee573fa567a833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bacteria</topic><topic>Bioburden</topic><topic>Biosensors</topic><topic>Classification</topic><topic>Contamination</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>E coli</topic><topic>Feature extraction</topic><topic>features</topic><topic>Fluorescence</topic><topic>Fluorometers</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Microorganisms</topic><topic>Portability</topic><topic>Prediction algorithms</topic><topic>Public health</topic><topic>Qualitative analysis</topic><topic>Regression analysis</topic><topic>Sampling methods</topic><topic>Strain</topic><topic>supervised algorithm</topic><topic>Supervised learning</topic><topic>Time series analysis</topic><topic>time-series</topic><topic>unsupervised algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Md Sadique</creatorcontrib><creatorcontrib>Sundberg, Chad</creatorcontrib><creatorcontrib>Hasan, Hasib</creatorcontrib><creatorcontrib>Kostov, Yordan</creatorcontrib><creatorcontrib>Ge, Xudong</creatorcontrib><creatorcontrib>Choa, Fow-Sen</creatorcontrib><creatorcontrib>Rao, Govind</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Md Sadique</au><au>Sundberg, Chad</au><au>Hasan, Hasib</au><au>Kostov, Yordan</au><au>Ge, Xudong</au><au>Choa, Fow-Sen</au><au>Rao, Govind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Rapid and sensitive bioburden detection is of paramount importance in different applications including public health, and food and water safety. To overcome the traditional limitations of bacterial detection i.e., lengthy culture time, and complicated procedure, a low-cost, portable multichannel fluorometer coupled with machine learning (ML) has been implemented in this study. Five different strains of bacterial samples were tested along with the negative control for time-series fluorescence data collection and analysis. We applied different conventional unsupervised and supervised machine learning techniques with extracted features followed by preprocessing of the data. Initially, machine learning algorithms were applied for the qualitative detection of bacteria by binary classification followed by regression analysis to predict the level of contamination for E. coli . The multiclass classification was used to identify gram-positive, and gram-negative bacterial strains and differentiate all the bacterial strains tested. Our results show that around 97.9% accuracy can be achieved for bacterial contamination detection for as low as 1 CFU/mL while 92.1% accuracy can be achieved for differentiating the gram-positive and gram-negative strains. Additionally, with 1 minute of data, high accuracy is obtained for detecting bioburden, proving the multichannel fluorometer's rapid detection capability. The multichannel fluorometer integrated with ML analytics is capable of automating data analysis and determining accurate and rapid bacterial detection on-site with the prediction of bioburden levels and differentiating bacterial strains and the protocol can be applied to the biosensors with a similar data type.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3303815</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9613-6110</orcidid><orcidid>https://orcid.org/0000-0003-1733-398X</orcidid><orcidid>https://orcid.org/0009-0000-4719-9203</orcidid><orcidid>https://orcid.org/0000-0001-6140-7582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2853026069
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Bacteria
Bioburden
Biosensors
Classification
Contamination
Data analysis
Data collection
E coli
Feature extraction
features
Fluorescence
Fluorometers
Machine learning
Machine learning algorithms
Microorganisms
Portability
Prediction algorithms
Public health
Qualitative analysis
Regression analysis
Sampling methods
Strain
supervised algorithm
Supervised learning
Time series analysis
time-series
unsupervised algorithm
title Rapid bacterial detection and identification of bacterial strains using machine learning methods integrated with a portable multichannel fluorometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20bacterial%20detection%20and%20identification%20of%20bacterial%20strains%20using%20machine%20learning%20methods%20integrated%20with%20a%20portable%20multichannel%20fluorometer&rft.jtitle=IEEE%20access&rft.au=Hasan,%20Md%20Sadique&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3303815&rft_dat=%3Cproquest_cross%3E2853026069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853026069&rft_id=info:pmid/&rft_ieee_id=10213451&rft_doaj_id=oai_doaj_org_article_c43414d2858649e38b54e2f1b22138a7&rfr_iscdi=true