On the analysis of a heterogeneous coupled network of memristive Chialvo neurons
We perform a numerical study on the application of electromagnetic flux on a heterogeneous network of Chialvo neurons represented by a ring-star topology. Heterogeneities are realized by introducing additive noise modulations on both the central–peripheral and the peripheral–peripheral coupling link...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2023-09, Vol.111 (18), p.17499-17518 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17518 |
---|---|
container_issue | 18 |
container_start_page | 17499 |
container_title | Nonlinear dynamics |
container_volume | 111 |
creator | Ghosh, Indranil Muni, Sishu Shankar Fatoyinbo, Hammed Olawale |
description | We perform a numerical study on the application of electromagnetic flux on a heterogeneous network of Chialvo neurons represented by a ring-star topology. Heterogeneities are realized by introducing additive noise modulations on both the central–peripheral and the peripheral–peripheral coupling links in the topology not only varying in space but also in time. The variation in time is understood by two coupling probabilities, one for the central–peripheral connections and the other for the peripheral–peripheral connections, respectively, that update the network topology with each iteration in time. We have further reported various rich spatiotemporal patterns like two-cluster states, chimera states, coherent, and asynchronized states that arise throughout the network dynamics. We have also investigated the appearance of a special kind of asynchronization behavior called “solitary nodes” that have a wide range of applications pertaining to real-world nervous systems. In order to characterize the behavior of the nodes under the influence of these heterogeneities, we have studied two different metrics called the “cross-correlation coefficient” and the “synchronization error.” Additionally, to capture the statistical property of the network, for example, how complex the system behaves, we have also studied a measure called “sample entropy.” Various two-dimensional color-coded plots are presented in the study to exhibit how these metrics/measures behave with the variation of parameters. |
doi_str_mv | 10.1007/s11071-023-08717-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2852871804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852871804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3e2f306d3b516660396959645fa6b900573db35c44b74691c285a32c995ca5063</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduzEI6r4kiqVAaRuluM6bUoaFzspyr_HJUhsTDfc8766exC6pnBLAfK7SCnklADjBIqc5mQ4QRMqck6YVMtTNAHFMgIKlufoIsYtAHAGxQS9LlrcbRw2rWmGWEfsK2zwxnUu-LVrne8jtr7fN26FW9d9-fBxRHZuF-rY1QeHZ5vaNAeftn3wbbxEZ5Vporv6nVP0_vjwNnsm88XTy-x-TiyXvCPcsYqDXPFSUCklcCWVUDITlZGlAkinr0oubJaVeSYVtawQhjOrlLBGgORTdDP27oP_7F3s9Nb3IX0RdUJZklBAlig2Ujb4GIOr9D7UOxMGTUEfzenRnE7m9I85PaQQH0Mxwe3ahb_qf1LfIiZw2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852871804</pqid></control><display><type>article</type><title>On the analysis of a heterogeneous coupled network of memristive Chialvo neurons</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ghosh, Indranil ; Muni, Sishu Shankar ; Fatoyinbo, Hammed Olawale</creator><creatorcontrib>Ghosh, Indranil ; Muni, Sishu Shankar ; Fatoyinbo, Hammed Olawale</creatorcontrib><description>We perform a numerical study on the application of electromagnetic flux on a heterogeneous network of Chialvo neurons represented by a ring-star topology. Heterogeneities are realized by introducing additive noise modulations on both the central–peripheral and the peripheral–peripheral coupling links in the topology not only varying in space but also in time. The variation in time is understood by two coupling probabilities, one for the central–peripheral connections and the other for the peripheral–peripheral connections, respectively, that update the network topology with each iteration in time. We have further reported various rich spatiotemporal patterns like two-cluster states, chimera states, coherent, and asynchronized states that arise throughout the network dynamics. We have also investigated the appearance of a special kind of asynchronization behavior called “solitary nodes” that have a wide range of applications pertaining to real-world nervous systems. In order to characterize the behavior of the nodes under the influence of these heterogeneities, we have studied two different metrics called the “cross-correlation coefficient” and the “synchronization error.” Additionally, to capture the statistical property of the network, for example, how complex the system behaves, we have also studied a measure called “sample entropy.” Various two-dimensional color-coded plots are presented in the study to exhibit how these metrics/measures behave with the variation of parameters.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-023-08717-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alzheimer's disease ; Automotive Engineering ; Behavior ; Classical Mechanics ; Control ; Correlation coefficients ; Coupling ; Cross correlation ; Dynamical Systems ; Engineering ; Entropy ; Iterative methods ; Mechanical Engineering ; Nervous system ; Network topologies ; Neural networks ; Neurons ; Neurosciences ; Nodes ; Ordinary differential equations ; Original Paper ; Rings (mathematics) ; Science education ; Synchronism ; Vibration</subject><ispartof>Nonlinear dynamics, 2023-09, Vol.111 (18), p.17499-17518</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3e2f306d3b516660396959645fa6b900573db35c44b74691c285a32c995ca5063</citedby><cites>FETCH-LOGICAL-c363t-3e2f306d3b516660396959645fa6b900573db35c44b74691c285a32c995ca5063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-023-08717-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-023-08717-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ghosh, Indranil</creatorcontrib><creatorcontrib>Muni, Sishu Shankar</creatorcontrib><creatorcontrib>Fatoyinbo, Hammed Olawale</creatorcontrib><title>On the analysis of a heterogeneous coupled network of memristive Chialvo neurons</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We perform a numerical study on the application of electromagnetic flux on a heterogeneous network of Chialvo neurons represented by a ring-star topology. Heterogeneities are realized by introducing additive noise modulations on both the central–peripheral and the peripheral–peripheral coupling links in the topology not only varying in space but also in time. The variation in time is understood by two coupling probabilities, one for the central–peripheral connections and the other for the peripheral–peripheral connections, respectively, that update the network topology with each iteration in time. We have further reported various rich spatiotemporal patterns like two-cluster states, chimera states, coherent, and asynchronized states that arise throughout the network dynamics. We have also investigated the appearance of a special kind of asynchronization behavior called “solitary nodes” that have a wide range of applications pertaining to real-world nervous systems. In order to characterize the behavior of the nodes under the influence of these heterogeneities, we have studied two different metrics called the “cross-correlation coefficient” and the “synchronization error.” Additionally, to capture the statistical property of the network, for example, how complex the system behaves, we have also studied a measure called “sample entropy.” Various two-dimensional color-coded plots are presented in the study to exhibit how these metrics/measures behave with the variation of parameters.</description><subject>Alzheimer's disease</subject><subject>Automotive Engineering</subject><subject>Behavior</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Correlation coefficients</subject><subject>Coupling</subject><subject>Cross correlation</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Iterative methods</subject><subject>Mechanical Engineering</subject><subject>Nervous system</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Nodes</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Rings (mathematics)</subject><subject>Science education</subject><subject>Synchronism</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduzEI6r4kiqVAaRuluM6bUoaFzspyr_HJUhsTDfc8766exC6pnBLAfK7SCnklADjBIqc5mQ4QRMqck6YVMtTNAHFMgIKlufoIsYtAHAGxQS9LlrcbRw2rWmGWEfsK2zwxnUu-LVrne8jtr7fN26FW9d9-fBxRHZuF-rY1QeHZ5vaNAeftn3wbbxEZ5Vporv6nVP0_vjwNnsm88XTy-x-TiyXvCPcsYqDXPFSUCklcCWVUDITlZGlAkinr0oubJaVeSYVtawQhjOrlLBGgORTdDP27oP_7F3s9Nb3IX0RdUJZklBAlig2Ujb4GIOr9D7UOxMGTUEfzenRnE7m9I85PaQQH0Mxwe3ahb_qf1LfIiZw2w</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Ghosh, Indranil</creator><creator>Muni, Sishu Shankar</creator><creator>Fatoyinbo, Hammed Olawale</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230901</creationdate><title>On the analysis of a heterogeneous coupled network of memristive Chialvo neurons</title><author>Ghosh, Indranil ; Muni, Sishu Shankar ; Fatoyinbo, Hammed Olawale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3e2f306d3b516660396959645fa6b900573db35c44b74691c285a32c995ca5063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Automotive Engineering</topic><topic>Behavior</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Correlation coefficients</topic><topic>Coupling</topic><topic>Cross correlation</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Iterative methods</topic><topic>Mechanical Engineering</topic><topic>Nervous system</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Nodes</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Rings (mathematics)</topic><topic>Science education</topic><topic>Synchronism</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Indranil</creatorcontrib><creatorcontrib>Muni, Sishu Shankar</creatorcontrib><creatorcontrib>Fatoyinbo, Hammed Olawale</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Indranil</au><au>Muni, Sishu Shankar</au><au>Fatoyinbo, Hammed Olawale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the analysis of a heterogeneous coupled network of memristive Chialvo neurons</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>111</volume><issue>18</issue><spage>17499</spage><epage>17518</epage><pages>17499-17518</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We perform a numerical study on the application of electromagnetic flux on a heterogeneous network of Chialvo neurons represented by a ring-star topology. Heterogeneities are realized by introducing additive noise modulations on both the central–peripheral and the peripheral–peripheral coupling links in the topology not only varying in space but also in time. The variation in time is understood by two coupling probabilities, one for the central–peripheral connections and the other for the peripheral–peripheral connections, respectively, that update the network topology with each iteration in time. We have further reported various rich spatiotemporal patterns like two-cluster states, chimera states, coherent, and asynchronized states that arise throughout the network dynamics. We have also investigated the appearance of a special kind of asynchronization behavior called “solitary nodes” that have a wide range of applications pertaining to real-world nervous systems. In order to characterize the behavior of the nodes under the influence of these heterogeneities, we have studied two different metrics called the “cross-correlation coefficient” and the “synchronization error.” Additionally, to capture the statistical property of the network, for example, how complex the system behaves, we have also studied a measure called “sample entropy.” Various two-dimensional color-coded plots are presented in the study to exhibit how these metrics/measures behave with the variation of parameters.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-023-08717-y</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2023-09, Vol.111 (18), p.17499-17518 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2852871804 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alzheimer's disease Automotive Engineering Behavior Classical Mechanics Control Correlation coefficients Coupling Cross correlation Dynamical Systems Engineering Entropy Iterative methods Mechanical Engineering Nervous system Network topologies Neural networks Neurons Neurosciences Nodes Ordinary differential equations Original Paper Rings (mathematics) Science education Synchronism Vibration |
title | On the analysis of a heterogeneous coupled network of memristive Chialvo neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20analysis%20of%20a%20heterogeneous%20coupled%20network%20of%20memristive%20Chialvo%20neurons&rft.jtitle=Nonlinear%20dynamics&rft.au=Ghosh,%20Indranil&rft.date=2023-09-01&rft.volume=111&rft.issue=18&rft.spage=17499&rft.epage=17518&rft.pages=17499-17518&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-023-08717-y&rft_dat=%3Cproquest_cross%3E2852871804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2852871804&rft_id=info:pmid/&rfr_iscdi=true |