A Neural Network Model for Estimating Carbon Fluxes in Forest Ecosystems from Remote Sensing Data

Forests are among the main places on Earth where carbon is collected and accumulated. However, instrumental assessment of carbon fluxes is possible only for small areas. When solving the scaling problem, machine learning methods are used, which allow transforming the Earth’s surface reflectance inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric and oceanic optics 2023-08, Vol.36 (4), p.323-328
Hauptverfasser: Rozanov, A. P., Gribanov, K. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 4
container_start_page 323
container_title Atmospheric and oceanic optics
container_volume 36
creator Rozanov, A. P.
Gribanov, K. G.
description Forests are among the main places on Earth where carbon is collected and accumulated. However, instrumental assessment of carbon fluxes is possible only for small areas. When solving the scaling problem, machine learning methods are used, which allow transforming the Earth’s surface reflectance intensities in different spectral ranges into ground-based in situ observations. We suggest a regression neural network model of the multilayer perceptron type for assessment of carbon fluxes. The model is trained on FLUXNET network data for a station located in a boreal coniferous forest (56.4615° N, 32.9221° E). Using the vegetation indices NDVI and EVI measured by the MODIS spectroradiometer onboard the Aqua satellite, the air temperature at an altitude of 2 m, and total precipitation as input data, the model estimates the gross primary production (GPP), net ecosystem exchange (NEE), ecosystem respiration (TER), and some other parameters which characterize water and energy fluxes. The statistical assessments for the test dataset show high correlation coefficients ( R ) and Nash–Sutcliffe coefficients (NSE): R > 0.9 and NSE ≥ 0.87 for GPP and TER; R  = 0.4 and NSE = 0.15 for NEE.
doi_str_mv 10.1134/S1024856023040152
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2852694964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852694964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a367ad97ec395d3990915ee63ce2242f24a33ac51485b8d310ca07590e0421c63</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq5PPbY6ltipUBavnJd2dLa27m5qkaP-9WSp4EE8z8D5m3iPkksE1Y0LeLBhwOVIauAAJTPEjMuCQQwbCiGMy6OGsx0_JWQgbAK2MYgNix_QJd942acRP59_po6uwobXzdBriurVx3a3oxPql6-is2X1hoOu0OY8h0mnpwj5EbAOtvWvpC7YuIl1gF3rZrY32nJzUtgl48TOH5G02fZ3cZ_Pnu4fJeJ6VgumYWaFzW5kcS2FUJYwBwxSiFiVyLnnNpRXCloqllMtRJRiUFnJlAEFyVmoxJFcH3613H7v0XLFxO9-lkwUfKa6NNFomFjuwSu9C8FgXW59C-n3BoOibLP40mTT8oAmJ263Q_zr_L_oGDNlzhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852694964</pqid></control><display><type>article</type><title>A Neural Network Model for Estimating Carbon Fluxes in Forest Ecosystems from Remote Sensing Data</title><source>Springer Nature - Complete Springer Journals</source><creator>Rozanov, A. P. ; Gribanov, K. G.</creator><creatorcontrib>Rozanov, A. P. ; Gribanov, K. G.</creatorcontrib><description>Forests are among the main places on Earth where carbon is collected and accumulated. However, instrumental assessment of carbon fluxes is possible only for small areas. When solving the scaling problem, machine learning methods are used, which allow transforming the Earth’s surface reflectance intensities in different spectral ranges into ground-based in situ observations. We suggest a regression neural network model of the multilayer perceptron type for assessment of carbon fluxes. The model is trained on FLUXNET network data for a station located in a boreal coniferous forest (56.4615° N, 32.9221° E). Using the vegetation indices NDVI and EVI measured by the MODIS spectroradiometer onboard the Aqua satellite, the air temperature at an altitude of 2 m, and total precipitation as input data, the model estimates the gross primary production (GPP), net ecosystem exchange (NEE), ecosystem respiration (TER), and some other parameters which characterize water and energy fluxes. The statistical assessments for the test dataset show high correlation coefficients ( R ) and Nash–Sutcliffe coefficients (NSE): R &gt; 0.9 and NSE ≥ 0.87 for GPP and TER; R  = 0.4 and NSE = 0.15 for NEE.</description><identifier>ISSN: 1024-8560</identifier><identifier>EISSN: 2070-0393</identifier><identifier>DOI: 10.1134/S1024856023040152</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Air temperature ; Boreal forests ; Carbon ; Coefficients ; Coniferous forests ; Correlation coefficient ; Correlation coefficients ; Earth surface ; Fluxes ; Forest ecosystems ; Ground-based observation ; Hydrosphere ; Lasers ; Machine learning ; Multilayer perceptrons ; Neural networks ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Primary production ; Reflectance ; Regression models ; Remote sensing ; Remote Sensing of Atmosphere ; Scaling ; Spectroradiometers ; Statistical analysis ; Underlying Surface ; Vegetation index</subject><ispartof>Atmospheric and oceanic optics, 2023-08, Vol.36 (4), p.323-328</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1024-8560, Atmospheric and Oceanic Optics, 2023, Vol. 36, No. 4, pp. 323–328. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Optika Atmosfery i Okeana.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a367ad97ec395d3990915ee63ce2242f24a33ac51485b8d310ca07590e0421c63</citedby><cites>FETCH-LOGICAL-c316t-a367ad97ec395d3990915ee63ce2242f24a33ac51485b8d310ca07590e0421c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1024856023040152$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1024856023040152$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rozanov, A. P.</creatorcontrib><creatorcontrib>Gribanov, K. G.</creatorcontrib><title>A Neural Network Model for Estimating Carbon Fluxes in Forest Ecosystems from Remote Sensing Data</title><title>Atmospheric and oceanic optics</title><addtitle>Atmos Ocean Opt</addtitle><description>Forests are among the main places on Earth where carbon is collected and accumulated. However, instrumental assessment of carbon fluxes is possible only for small areas. When solving the scaling problem, machine learning methods are used, which allow transforming the Earth’s surface reflectance intensities in different spectral ranges into ground-based in situ observations. We suggest a regression neural network model of the multilayer perceptron type for assessment of carbon fluxes. The model is trained on FLUXNET network data for a station located in a boreal coniferous forest (56.4615° N, 32.9221° E). Using the vegetation indices NDVI and EVI measured by the MODIS spectroradiometer onboard the Aqua satellite, the air temperature at an altitude of 2 m, and total precipitation as input data, the model estimates the gross primary production (GPP), net ecosystem exchange (NEE), ecosystem respiration (TER), and some other parameters which characterize water and energy fluxes. The statistical assessments for the test dataset show high correlation coefficients ( R ) and Nash–Sutcliffe coefficients (NSE): R &gt; 0.9 and NSE ≥ 0.87 for GPP and TER; R  = 0.4 and NSE = 0.15 for NEE.</description><subject>Air temperature</subject><subject>Boreal forests</subject><subject>Carbon</subject><subject>Coefficients</subject><subject>Coniferous forests</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth surface</subject><subject>Fluxes</subject><subject>Forest ecosystems</subject><subject>Ground-based observation</subject><subject>Hydrosphere</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Primary production</subject><subject>Reflectance</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>Remote Sensing of Atmosphere</subject><subject>Scaling</subject><subject>Spectroradiometers</subject><subject>Statistical analysis</subject><subject>Underlying Surface</subject><subject>Vegetation index</subject><issn>1024-8560</issn><issn>2070-0393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq5PPbY6ltipUBavnJd2dLa27m5qkaP-9WSp4EE8z8D5m3iPkksE1Y0LeLBhwOVIauAAJTPEjMuCQQwbCiGMy6OGsx0_JWQgbAK2MYgNix_QJd942acRP59_po6uwobXzdBriurVx3a3oxPql6-is2X1hoOu0OY8h0mnpwj5EbAOtvWvpC7YuIl1gF3rZrY32nJzUtgl48TOH5G02fZ3cZ_Pnu4fJeJ6VgumYWaFzW5kcS2FUJYwBwxSiFiVyLnnNpRXCloqllMtRJRiUFnJlAEFyVmoxJFcH3613H7v0XLFxO9-lkwUfKa6NNFomFjuwSu9C8FgXW59C-n3BoOibLP40mTT8oAmJ263Q_zr_L_oGDNlzhw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Rozanov, A. P.</creator><creator>Gribanov, K. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20230801</creationdate><title>A Neural Network Model for Estimating Carbon Fluxes in Forest Ecosystems from Remote Sensing Data</title><author>Rozanov, A. P. ; Gribanov, K. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a367ad97ec395d3990915ee63ce2242f24a33ac51485b8d310ca07590e0421c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air temperature</topic><topic>Boreal forests</topic><topic>Carbon</topic><topic>Coefficients</topic><topic>Coniferous forests</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth surface</topic><topic>Fluxes</topic><topic>Forest ecosystems</topic><topic>Ground-based observation</topic><topic>Hydrosphere</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Primary production</topic><topic>Reflectance</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>Remote Sensing of Atmosphere</topic><topic>Scaling</topic><topic>Spectroradiometers</topic><topic>Statistical analysis</topic><topic>Underlying Surface</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozanov, A. P.</creatorcontrib><creatorcontrib>Gribanov, K. G.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Atmospheric and oceanic optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozanov, A. P.</au><au>Gribanov, K. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neural Network Model for Estimating Carbon Fluxes in Forest Ecosystems from Remote Sensing Data</atitle><jtitle>Atmospheric and oceanic optics</jtitle><stitle>Atmos Ocean Opt</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>36</volume><issue>4</issue><spage>323</spage><epage>328</epage><pages>323-328</pages><issn>1024-8560</issn><eissn>2070-0393</eissn><abstract>Forests are among the main places on Earth where carbon is collected and accumulated. However, instrumental assessment of carbon fluxes is possible only for small areas. When solving the scaling problem, machine learning methods are used, which allow transforming the Earth’s surface reflectance intensities in different spectral ranges into ground-based in situ observations. We suggest a regression neural network model of the multilayer perceptron type for assessment of carbon fluxes. The model is trained on FLUXNET network data for a station located in a boreal coniferous forest (56.4615° N, 32.9221° E). Using the vegetation indices NDVI and EVI measured by the MODIS spectroradiometer onboard the Aqua satellite, the air temperature at an altitude of 2 m, and total precipitation as input data, the model estimates the gross primary production (GPP), net ecosystem exchange (NEE), ecosystem respiration (TER), and some other parameters which characterize water and energy fluxes. The statistical assessments for the test dataset show high correlation coefficients ( R ) and Nash–Sutcliffe coefficients (NSE): R &gt; 0.9 and NSE ≥ 0.87 for GPP and TER; R  = 0.4 and NSE = 0.15 for NEE.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1024856023040152</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1024-8560
ispartof Atmospheric and oceanic optics, 2023-08, Vol.36 (4), p.323-328
issn 1024-8560
2070-0393
language eng
recordid cdi_proquest_journals_2852694964
source Springer Nature - Complete Springer Journals
subjects Air temperature
Boreal forests
Carbon
Coefficients
Coniferous forests
Correlation coefficient
Correlation coefficients
Earth surface
Fluxes
Forest ecosystems
Ground-based observation
Hydrosphere
Lasers
Machine learning
Multilayer perceptrons
Neural networks
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Primary production
Reflectance
Regression models
Remote sensing
Remote Sensing of Atmosphere
Scaling
Spectroradiometers
Statistical analysis
Underlying Surface
Vegetation index
title A Neural Network Model for Estimating Carbon Fluxes in Forest Ecosystems from Remote Sensing Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neural%20Network%20Model%20for%20Estimating%20Carbon%20Fluxes%20in%20Forest%20Ecosystems%20from%20Remote%20Sensing%20Data&rft.jtitle=Atmospheric%20and%20oceanic%20optics&rft.au=Rozanov,%20A.%20P.&rft.date=2023-08-01&rft.volume=36&rft.issue=4&rft.spage=323&rft.epage=328&rft.pages=323-328&rft.issn=1024-8560&rft.eissn=2070-0393&rft_id=info:doi/10.1134/S1024856023040152&rft_dat=%3Cproquest_cross%3E2852694964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2852694964&rft_id=info:pmid/&rfr_iscdi=true