Computer-aided fusion-based neural network in application to categorize tomato plants

Pest’s infection affects the crop production and annual income. From the past decade, many traditional methods anticipated the optimum accuracy while categorizing the infected tomato-plants. Every technique has their pros and specifically the cons. As an upgradation, this paper introduces appropriat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2023-10, Vol.17 (7), p.3313-3321
Hauptverfasser: Uppada, Rajyalakshmi, Kumar, D. V. A. N. Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3321
container_issue 7
container_start_page 3313
container_title Signal, image and video processing
container_volume 17
creator Uppada, Rajyalakshmi
Kumar, D. V. A. N. Ravi
description Pest’s infection affects the crop production and annual income. From the past decade, many traditional methods anticipated the optimum accuracy while categorizing the infected tomato-plants. Every technique has their pros and specifically the cons. As an upgradation, this paper introduces appropriate unsupervised detection & categorization of the diseased/healthy tomato plant using neural-net techniques. Image dataset is congregation of both online and naturally accessible samples for healthy & diseased tomato crops. The current algorithm executes three steps to attain utmost performance: (i) Data pre-processing using Non-Subsampled Contourlet to acquire energy-detail components, (ii) Modified K-means processing to extract colored clusters, that are in-turn utilized for tomato-leaf detection, and (iii) finally Modified Convolution-Neural Network features are fused to SVM for automated categorization. The work was tested for Kaggle PlantVillage and Mendeley datatset constituting 20,283 images, forming one healthy and 10 disease classes. The model undergoes the subjective performance metric evaluation and achieved the model accuracy as 99.15% and average precision of 95.6%. Technique produces highly intense, automatic and accurate classifier results over state-of-the-art approaches.
doi_str_mv 10.1007/s11760-023-02551-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2852694391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852694391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c85d856d362ca65d9349a278763b5471679eac19b707b33c1cb074a74051930a3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgsu4f8FTwHM10mqQ5yuIXLHhxzyFNs0vXblOTlqK_3mhFbw4M88F7b4ZHyCWwa2BM3kQAKRhlOabkHOh0QhZQCqQgAU5_e4bnZBXjgaXAXJaiXJDt2h_7cXCBmqZ2dbYbY-M7WpmYhs6NwbSpDJMPr1nTZabv28aaIWGywWepc3sfmg-XpqNJm7413RAvyNnOtNGtfuqSbO_vXtaPdPP88LS-3VCLoAZqS16XXNQocmsErxUWyqTHpMCKFxKEVM5YUJVkskK0YCsmCyMLxkEhM7gkV7NuH_zb6OKgD34MXTqp85LnQhWoIKHyGWWDjzG4ne5DczThXQPTXw7q2UGdHNTfDuopkXAmxQTu9i78Sf_D-gQU3XOz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852694391</pqid></control><display><type>article</type><title>Computer-aided fusion-based neural network in application to categorize tomato plants</title><source>SpringerLink Journals - AutoHoldings</source><creator>Uppada, Rajyalakshmi ; Kumar, D. V. A. N. Ravi</creator><creatorcontrib>Uppada, Rajyalakshmi ; Kumar, D. V. A. N. Ravi</creatorcontrib><description>Pest’s infection affects the crop production and annual income. From the past decade, many traditional methods anticipated the optimum accuracy while categorizing the infected tomato-plants. Every technique has their pros and specifically the cons. As an upgradation, this paper introduces appropriate unsupervised detection &amp; categorization of the diseased/healthy tomato plant using neural-net techniques. Image dataset is congregation of both online and naturally accessible samples for healthy &amp; diseased tomato crops. The current algorithm executes three steps to attain utmost performance: (i) Data pre-processing using Non-Subsampled Contourlet to acquire energy-detail components, (ii) Modified K-means processing to extract colored clusters, that are in-turn utilized for tomato-leaf detection, and (iii) finally Modified Convolution-Neural Network features are fused to SVM for automated categorization. The work was tested for Kaggle PlantVillage and Mendeley datatset constituting 20,283 images, forming one healthy and 10 disease classes. The model undergoes the subjective performance metric evaluation and achieved the model accuracy as 99.15% and average precision of 95.6%. Technique produces highly intense, automatic and accurate classifier results over state-of-the-art approaches.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-023-02551-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Classification ; Computer Imaging ; Computer Science ; Crop production ; Image Processing and Computer Vision ; Model accuracy ; Multimedia Information Systems ; Neural networks ; Original Paper ; Pattern Recognition and Graphics ; Performance evaluation ; Plants (botany) ; Signal,Image and Speech Processing ; Tomatoes ; Vision</subject><ispartof>Signal, image and video processing, 2023-10, Vol.17 (7), p.3313-3321</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c85d856d362ca65d9349a278763b5471679eac19b707b33c1cb074a74051930a3</citedby><cites>FETCH-LOGICAL-c319t-c85d856d362ca65d9349a278763b5471679eac19b707b33c1cb074a74051930a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-023-02551-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-023-02551-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Uppada, Rajyalakshmi</creatorcontrib><creatorcontrib>Kumar, D. V. A. N. Ravi</creatorcontrib><title>Computer-aided fusion-based neural network in application to categorize tomato plants</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Pest’s infection affects the crop production and annual income. From the past decade, many traditional methods anticipated the optimum accuracy while categorizing the infected tomato-plants. Every technique has their pros and specifically the cons. As an upgradation, this paper introduces appropriate unsupervised detection &amp; categorization of the diseased/healthy tomato plant using neural-net techniques. Image dataset is congregation of both online and naturally accessible samples for healthy &amp; diseased tomato crops. The current algorithm executes three steps to attain utmost performance: (i) Data pre-processing using Non-Subsampled Contourlet to acquire energy-detail components, (ii) Modified K-means processing to extract colored clusters, that are in-turn utilized for tomato-leaf detection, and (iii) finally Modified Convolution-Neural Network features are fused to SVM for automated categorization. The work was tested for Kaggle PlantVillage and Mendeley datatset constituting 20,283 images, forming one healthy and 10 disease classes. The model undergoes the subjective performance metric evaluation and achieved the model accuracy as 99.15% and average precision of 95.6%. Technique produces highly intense, automatic and accurate classifier results over state-of-the-art approaches.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Crop production</subject><subject>Image Processing and Computer Vision</subject><subject>Model accuracy</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance evaluation</subject><subject>Plants (botany)</subject><subject>Signal,Image and Speech Processing</subject><subject>Tomatoes</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLgsu4f8FTwHM10mqQ5yuIXLHhxzyFNs0vXblOTlqK_3mhFbw4M88F7b4ZHyCWwa2BM3kQAKRhlOabkHOh0QhZQCqQgAU5_e4bnZBXjgaXAXJaiXJDt2h_7cXCBmqZ2dbYbY-M7WpmYhs6NwbSpDJMPr1nTZabv28aaIWGywWepc3sfmg-XpqNJm7413RAvyNnOtNGtfuqSbO_vXtaPdPP88LS-3VCLoAZqS16XXNQocmsErxUWyqTHpMCKFxKEVM5YUJVkskK0YCsmCyMLxkEhM7gkV7NuH_zb6OKgD34MXTqp85LnQhWoIKHyGWWDjzG4ne5DczThXQPTXw7q2UGdHNTfDuopkXAmxQTu9i78Sf_D-gQU3XOz</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Uppada, Rajyalakshmi</creator><creator>Kumar, D. V. A. N. Ravi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Computer-aided fusion-based neural network in application to categorize tomato plants</title><author>Uppada, Rajyalakshmi ; Kumar, D. V. A. N. Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c85d856d362ca65d9349a278763b5471679eac19b707b33c1cb074a74051930a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Crop production</topic><topic>Image Processing and Computer Vision</topic><topic>Model accuracy</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance evaluation</topic><topic>Plants (botany)</topic><topic>Signal,Image and Speech Processing</topic><topic>Tomatoes</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uppada, Rajyalakshmi</creatorcontrib><creatorcontrib>Kumar, D. V. A. N. Ravi</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uppada, Rajyalakshmi</au><au>Kumar, D. V. A. N. Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided fusion-based neural network in application to categorize tomato plants</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>17</volume><issue>7</issue><spage>3313</spage><epage>3321</epage><pages>3313-3321</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Pest’s infection affects the crop production and annual income. From the past decade, many traditional methods anticipated the optimum accuracy while categorizing the infected tomato-plants. Every technique has their pros and specifically the cons. As an upgradation, this paper introduces appropriate unsupervised detection &amp; categorization of the diseased/healthy tomato plant using neural-net techniques. Image dataset is congregation of both online and naturally accessible samples for healthy &amp; diseased tomato crops. The current algorithm executes three steps to attain utmost performance: (i) Data pre-processing using Non-Subsampled Contourlet to acquire energy-detail components, (ii) Modified K-means processing to extract colored clusters, that are in-turn utilized for tomato-leaf detection, and (iii) finally Modified Convolution-Neural Network features are fused to SVM for automated categorization. The work was tested for Kaggle PlantVillage and Mendeley datatset constituting 20,283 images, forming one healthy and 10 disease classes. The model undergoes the subjective performance metric evaluation and achieved the model accuracy as 99.15% and average precision of 95.6%. Technique produces highly intense, automatic and accurate classifier results over state-of-the-art approaches.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-023-02551-w</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2023-10, Vol.17 (7), p.3313-3321
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2852694391
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Classification
Computer Imaging
Computer Science
Crop production
Image Processing and Computer Vision
Model accuracy
Multimedia Information Systems
Neural networks
Original Paper
Pattern Recognition and Graphics
Performance evaluation
Plants (botany)
Signal,Image and Speech Processing
Tomatoes
Vision
title Computer-aided fusion-based neural network in application to categorize tomato plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20fusion-based%20neural%20network%20in%20application%20to%20categorize%20tomato%20plants&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Uppada,%20Rajyalakshmi&rft.date=2023-10-01&rft.volume=17&rft.issue=7&rft.spage=3313&rft.epage=3321&rft.pages=3313-3321&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-023-02551-w&rft_dat=%3Cproquest_cross%3E2852694391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2852694391&rft_id=info:pmid/&rfr_iscdi=true