The impact of green synthesized seed layer on ZnO nanorod arrays grown by chemical bath deposition

ZnO nanorods were synthesized via CBD method on a seed layer coated substrate. Prior to growth, a glass substrate was seeded with the biosynthesized ZnO nanoparticles using Thymus Kotschyanus extract. XRD confirmed that for the sample within higher precursor concentration, the (100) peak is noticeab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2023-08, Vol.38 (15), p.3801-3813
Hauptverfasser: Aspoukeh, Peyman K., Barzinjy, Azeez A., Hamad, Samir M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3813
container_issue 15
container_start_page 3801
container_title Journal of materials research
container_volume 38
creator Aspoukeh, Peyman K.
Barzinjy, Azeez A.
Hamad, Samir M.
description ZnO nanorods were synthesized via CBD method on a seed layer coated substrate. Prior to growth, a glass substrate was seeded with the biosynthesized ZnO nanoparticles using Thymus Kotschyanus extract. XRD confirmed that for the sample within higher precursor concentration, the (100) peak is noticeably shorter, and the majority of the nanorods are grown in the (002) plane, indicating crystal growth are along the c-axis. However, the nanorods are mostly aligned along the (100), (002), and (101) planes for samples at 0.02 and 0.05 Mol precursor concentrations. The presence of ZnO nanorods within hexagonal-wurtzite structure, is favored orientation along the c-axis. As the precursor concentrations of the seed layer increased from 0.02 to 0.1 Mol, the dispersion of ZnO nanoparticles became denser, the maximum absorption peaks red-shifted, from 395 to 420 nm, and the bandgap energy of the biosynthesized ZnO decreased from 3.59 to 3.38 eV, with increasing precursor concentrations. Graphical abstract
doi_str_mv 10.1557/s43578-023-01103-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2851941541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2851941541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d82a594449cfacb17820852ae1c609e20fbdc2f5ac0add137a44ef0fce675ef43</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRueHbtJRlTxJVXqUhYWy3Gem1StHexUKPx6AkFiY3l3uec-6RByzeGWK5XfJZmpvGAgMgacQ8bKEzITICVTmVickhkUhWSi5PKcXKS0A-AKcjkj1aZB2h46Y3saHN1GRE_T4PsGU_uJNU04nr0ZMNLg6ZtfU298iKGmJkYzpBEJH55WA7UNHlpr9rQyfUNr7EJq-zb4S3LmzD7h1W_Oyevjw2b5zFbrp5fl_YpZkUPP6kIYVUopS-uMrXheCCiUMMjtAkoU4KraCqeMBVPXPMuNlOjAWVzkCp3M5uRm2u1ieD9i6vUuHKMfX2pRKF5KriQfW2Jq2RhSiuh0F9uDiYPmoL9d6smlHl3qH5e6HKFsgtJY9luMf9P_UF8i3nhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851941541</pqid></control><display><type>article</type><title>The impact of green synthesized seed layer on ZnO nanorod arrays grown by chemical bath deposition</title><source>SpringerLink Journals</source><creator>Aspoukeh, Peyman K. ; Barzinjy, Azeez A. ; Hamad, Samir M.</creator><creatorcontrib>Aspoukeh, Peyman K. ; Barzinjy, Azeez A. ; Hamad, Samir M.</creatorcontrib><description>ZnO nanorods were synthesized via CBD method on a seed layer coated substrate. Prior to growth, a glass substrate was seeded with the biosynthesized ZnO nanoparticles using Thymus Kotschyanus extract. XRD confirmed that for the sample within higher precursor concentration, the (100) peak is noticeably shorter, and the majority of the nanorods are grown in the (002) plane, indicating crystal growth are along the c-axis. However, the nanorods are mostly aligned along the (100), (002), and (101) planes for samples at 0.02 and 0.05 Mol precursor concentrations. The presence of ZnO nanorods within hexagonal-wurtzite structure, is favored orientation along the c-axis. As the precursor concentrations of the seed layer increased from 0.02 to 0.1 Mol, the dispersion of ZnO nanoparticles became denser, the maximum absorption peaks red-shifted, from 395 to 420 nm, and the bandgap energy of the biosynthesized ZnO decreased from 3.59 to 3.38 eV, with increasing precursor concentrations. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-023-01103-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemical synthesis ; Chemistry and Materials Science ; Crystal growth ; Glass substrates ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Nanoparticles ; Nanorods ; Nanotechnology ; Precursors ; Wurtzite ; Zinc oxide</subject><ispartof>Journal of materials research, 2023-08, Vol.38 (15), p.3801-3813</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d82a594449cfacb17820852ae1c609e20fbdc2f5ac0add137a44ef0fce675ef43</cites><orcidid>0000-0003-4009-9845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-023-01103-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-023-01103-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Aspoukeh, Peyman K.</creatorcontrib><creatorcontrib>Barzinjy, Azeez A.</creatorcontrib><creatorcontrib>Hamad, Samir M.</creatorcontrib><title>The impact of green synthesized seed layer on ZnO nanorod arrays grown by chemical bath deposition</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>ZnO nanorods were synthesized via CBD method on a seed layer coated substrate. Prior to growth, a glass substrate was seeded with the biosynthesized ZnO nanoparticles using Thymus Kotschyanus extract. XRD confirmed that for the sample within higher precursor concentration, the (100) peak is noticeably shorter, and the majority of the nanorods are grown in the (002) plane, indicating crystal growth are along the c-axis. However, the nanorods are mostly aligned along the (100), (002), and (101) planes for samples at 0.02 and 0.05 Mol precursor concentrations. The presence of ZnO nanorods within hexagonal-wurtzite structure, is favored orientation along the c-axis. As the precursor concentrations of the seed layer increased from 0.02 to 0.1 Mol, the dispersion of ZnO nanoparticles became denser, the maximum absorption peaks red-shifted, from 395 to 420 nm, and the bandgap energy of the biosynthesized ZnO decreased from 3.59 to 3.38 eV, with increasing precursor concentrations. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Crystal growth</subject><subject>Glass substrates</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Precursors</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRueHbtJRlTxJVXqUhYWy3Gem1StHexUKPx6AkFiY3l3uec-6RByzeGWK5XfJZmpvGAgMgacQ8bKEzITICVTmVickhkUhWSi5PKcXKS0A-AKcjkj1aZB2h46Y3saHN1GRE_T4PsGU_uJNU04nr0ZMNLg6ZtfU298iKGmJkYzpBEJH55WA7UNHlpr9rQyfUNr7EJq-zb4S3LmzD7h1W_Oyevjw2b5zFbrp5fl_YpZkUPP6kIYVUopS-uMrXheCCiUMMjtAkoU4KraCqeMBVPXPMuNlOjAWVzkCp3M5uRm2u1ieD9i6vUuHKMfX2pRKF5KriQfW2Jq2RhSiuh0F9uDiYPmoL9d6smlHl3qH5e6HKFsgtJY9luMf9P_UF8i3nhs</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Aspoukeh, Peyman K.</creator><creator>Barzinjy, Azeez A.</creator><creator>Hamad, Samir M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4009-9845</orcidid></search><sort><creationdate>20230814</creationdate><title>The impact of green synthesized seed layer on ZnO nanorod arrays grown by chemical bath deposition</title><author>Aspoukeh, Peyman K. ; Barzinjy, Azeez A. ; Hamad, Samir M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d82a594449cfacb17820852ae1c609e20fbdc2f5ac0add137a44ef0fce675ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Crystal growth</topic><topic>Glass substrates</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Precursors</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aspoukeh, Peyman K.</creatorcontrib><creatorcontrib>Barzinjy, Azeez A.</creatorcontrib><creatorcontrib>Hamad, Samir M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aspoukeh, Peyman K.</au><au>Barzinjy, Azeez A.</au><au>Hamad, Samir M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of green synthesized seed layer on ZnO nanorod arrays grown by chemical bath deposition</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-08-14</date><risdate>2023</risdate><volume>38</volume><issue>15</issue><spage>3801</spage><epage>3813</epage><pages>3801-3813</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>ZnO nanorods were synthesized via CBD method on a seed layer coated substrate. Prior to growth, a glass substrate was seeded with the biosynthesized ZnO nanoparticles using Thymus Kotschyanus extract. XRD confirmed that for the sample within higher precursor concentration, the (100) peak is noticeably shorter, and the majority of the nanorods are grown in the (002) plane, indicating crystal growth are along the c-axis. However, the nanorods are mostly aligned along the (100), (002), and (101) planes for samples at 0.02 and 0.05 Mol precursor concentrations. The presence of ZnO nanorods within hexagonal-wurtzite structure, is favored orientation along the c-axis. As the precursor concentrations of the seed layer increased from 0.02 to 0.1 Mol, the dispersion of ZnO nanoparticles became denser, the maximum absorption peaks red-shifted, from 395 to 420 nm, and the bandgap energy of the biosynthesized ZnO decreased from 3.59 to 3.38 eV, with increasing precursor concentrations. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-023-01103-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4009-9845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2023-08, Vol.38 (15), p.3801-3813
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2851941541
source SpringerLink Journals
subjects Applied and Technical Physics
Biomaterials
Chemical synthesis
Chemistry and Materials Science
Crystal growth
Glass substrates
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Nanoparticles
Nanorods
Nanotechnology
Precursors
Wurtzite
Zinc oxide
title The impact of green synthesized seed layer on ZnO nanorod arrays grown by chemical bath deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20green%20synthesized%20seed%20layer%20on%20ZnO%20nanorod%20arrays%20grown%20by%20chemical%20bath%20deposition&rft.jtitle=Journal%20of%20materials%20research&rft.au=Aspoukeh,%20Peyman%20K.&rft.date=2023-08-14&rft.volume=38&rft.issue=15&rft.spage=3801&rft.epage=3813&rft.pages=3801-3813&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-023-01103-9&rft_dat=%3Cproquest_cross%3E2851941541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851941541&rft_id=info:pmid/&rfr_iscdi=true