Anisotropic Thermo‐Optic Mach–Zehnder Interferometer on LNOI for Polarization Handling and Multiplexing

Thin‐film lithium niobate (LN) on insulator (LNOI) is emerging as a promising integrated photonic platform. Thermo‐optic (TO) Mach–Zehnder interferometers (MZIs) on LNOI are demonstrated to be a viable and often preferred alternative to their electro‐optic counterparts for low‐speed and static appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2023-08, Vol.17 (8), p.n/a
Hauptverfasser: Song, Lijia, Liu, Weixi, Guo, Zehao, Li, Hanwen, Xie, Yiwei, Yu, Zejie, Li, Huan, Shi, Yaocheng, Dai, Daoxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Laser & photonics reviews
container_volume 17
creator Song, Lijia
Liu, Weixi
Guo, Zehao
Li, Hanwen
Xie, Yiwei
Yu, Zejie
Li, Huan
Shi, Yaocheng
Dai, Daoxin
description Thin‐film lithium niobate (LN) on insulator (LNOI) is emerging as a promising integrated photonic platform. Thermo‐optic (TO) Mach–Zehnder interferometers (MZIs) on LNOI are demonstrated to be a viable and often preferred alternative to their electro‐optic counterparts for low‐speed and static applications, where stability and repeatability are crucial. Harnessing the unique and strong anisotropic TO effect of LN, a novel and versatile anisotropic TO MZI on x‐cut LNOI for polarization handling and multiplexing is proposed and experimentally implemented. Each MZI arm consists of a two‐section anisotropic TO phase shifter along the y‐ and z‐directions of the LN crystal, leading to anisotropic temperature dependence of the effective refractive indices for the transverse‐electric (TE) and transverse‐magnetic (TM) polarizations. A polarization‐insensitive switch and a polarization beam splitter are implemented with the MZI device, which features low excess loss of ≈0.2–1.8 dB and a high extinction ratio of ≈20–45 dB in the telecom C‐band (1530–1565 nm). More intriguingly, arbitrary splitting ratios and even arbitrary combinations of unitary transmission matrices can be further implemented for both polarizations simultaneously. The versatile configurations of this anisotropic TO MZI have important implications for large‐scale photonic computing and interconnect. Harnessing the unique and strong anisotropic thermo‐optic effect of lithium niobate, a novel and versatile Mach–Zehnder interferometer on lithium niobate on insulator for polarization handling and multiplexing is proposed and implemented. Its versatile configurations, including but not limited to a polarization‐insensitive switch and a polarization beam splitter, have important implications for large‐scale photonic computing and interconnect.
doi_str_mv 10.1002/lpor.202300025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2851446645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2851446645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-88f9a937bcb2979b259113d1b9dc25a2884e39e66ad4b0370d5d90c6618174e23</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMKVsyXOLX7Ejn2sKqCVWlIhuHCxnMShLmkcnFRQTv0EJP6wX4KronJkL7OzmtldDQCXGPUxQuS6rJ3vE0QoCowdgQ4WnPaEkPL40At0Cs6aZoEQC8U74HVQ2ca13tU2g49z45duu_lK6jbQqc7m2833s5lXufFwXLXGF8a7pQkNdBWc3CdjWDgPZ67U3n7q1obpSFd5aasXGBBOV2Vr69J8hME5OCl02ZiLX-yCp9ubx-GoN0nuxsPBpJdRHLPwZSG1pHGapUTGMiVMYkxznMo8I0wTISJDpeFc51GKaIxylkuUcY4FjiNDaBdc7ffW3r2tTNOqhVv5KpxURDAcRZxHLKj6e1XmXdN4U6ja26X2a4WR2gWqdoGqQ6DBIPeGd1ua9T9qNZklD3_eH8RZfKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851446645</pqid></control><display><type>article</type><title>Anisotropic Thermo‐Optic Mach–Zehnder Interferometer on LNOI for Polarization Handling and Multiplexing</title><source>Wiley Online Library All Journals</source><creator>Song, Lijia ; Liu, Weixi ; Guo, Zehao ; Li, Hanwen ; Xie, Yiwei ; Yu, Zejie ; Li, Huan ; Shi, Yaocheng ; Dai, Daoxin</creator><creatorcontrib>Song, Lijia ; Liu, Weixi ; Guo, Zehao ; Li, Hanwen ; Xie, Yiwei ; Yu, Zejie ; Li, Huan ; Shi, Yaocheng ; Dai, Daoxin</creatorcontrib><description>Thin‐film lithium niobate (LN) on insulator (LNOI) is emerging as a promising integrated photonic platform. Thermo‐optic (TO) Mach–Zehnder interferometers (MZIs) on LNOI are demonstrated to be a viable and often preferred alternative to their electro‐optic counterparts for low‐speed and static applications, where stability and repeatability are crucial. Harnessing the unique and strong anisotropic TO effect of LN, a novel and versatile anisotropic TO MZI on x‐cut LNOI for polarization handling and multiplexing is proposed and experimentally implemented. Each MZI arm consists of a two‐section anisotropic TO phase shifter along the y‐ and z‐directions of the LN crystal, leading to anisotropic temperature dependence of the effective refractive indices for the transverse‐electric (TE) and transverse‐magnetic (TM) polarizations. A polarization‐insensitive switch and a polarization beam splitter are implemented with the MZI device, which features low excess loss of ≈0.2–1.8 dB and a high extinction ratio of ≈20–45 dB in the telecom C‐band (1530–1565 nm). More intriguingly, arbitrary splitting ratios and even arbitrary combinations of unitary transmission matrices can be further implemented for both polarizations simultaneously. The versatile configurations of this anisotropic TO MZI have important implications for large‐scale photonic computing and interconnect. Harnessing the unique and strong anisotropic thermo‐optic effect of lithium niobate, a novel and versatile Mach–Zehnder interferometer on lithium niobate on insulator for polarization handling and multiplexing is proposed and implemented. Its versatile configurations, including but not limited to a polarization‐insensitive switch and a polarization beam splitter, have important implications for large‐scale photonic computing and interconnect.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202300025</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anisotropic ; Lithium niobates ; LNOI ; Mach-Zehnder interferometers ; Multiplexing ; Phase shifters ; Photonics ; Polarization ; polarization handling ; polarization multiplexing ; Refractivity ; Temperature dependence ; thermo‐optic MZI ; Thin films</subject><ispartof>Laser &amp; photonics reviews, 2023-08, Vol.17 (8), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-88f9a937bcb2979b259113d1b9dc25a2884e39e66ad4b0370d5d90c6618174e23</citedby><cites>FETCH-LOGICAL-c3175-88f9a937bcb2979b259113d1b9dc25a2884e39e66ad4b0370d5d90c6618174e23</cites><orcidid>0000-0003-4489-8310 ; 0000-0002-8749-0385 ; 0000-0002-9070-8584 ; 0000-0002-2494-3420 ; 0000-0002-2769-3009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202300025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202300025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Song, Lijia</creatorcontrib><creatorcontrib>Liu, Weixi</creatorcontrib><creatorcontrib>Guo, Zehao</creatorcontrib><creatorcontrib>Li, Hanwen</creatorcontrib><creatorcontrib>Xie, Yiwei</creatorcontrib><creatorcontrib>Yu, Zejie</creatorcontrib><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Shi, Yaocheng</creatorcontrib><creatorcontrib>Dai, Daoxin</creatorcontrib><title>Anisotropic Thermo‐Optic Mach–Zehnder Interferometer on LNOI for Polarization Handling and Multiplexing</title><title>Laser &amp; photonics reviews</title><description>Thin‐film lithium niobate (LN) on insulator (LNOI) is emerging as a promising integrated photonic platform. Thermo‐optic (TO) Mach–Zehnder interferometers (MZIs) on LNOI are demonstrated to be a viable and often preferred alternative to their electro‐optic counterparts for low‐speed and static applications, where stability and repeatability are crucial. Harnessing the unique and strong anisotropic TO effect of LN, a novel and versatile anisotropic TO MZI on x‐cut LNOI for polarization handling and multiplexing is proposed and experimentally implemented. Each MZI arm consists of a two‐section anisotropic TO phase shifter along the y‐ and z‐directions of the LN crystal, leading to anisotropic temperature dependence of the effective refractive indices for the transverse‐electric (TE) and transverse‐magnetic (TM) polarizations. A polarization‐insensitive switch and a polarization beam splitter are implemented with the MZI device, which features low excess loss of ≈0.2–1.8 dB and a high extinction ratio of ≈20–45 dB in the telecom C‐band (1530–1565 nm). More intriguingly, arbitrary splitting ratios and even arbitrary combinations of unitary transmission matrices can be further implemented for both polarizations simultaneously. The versatile configurations of this anisotropic TO MZI have important implications for large‐scale photonic computing and interconnect. Harnessing the unique and strong anisotropic thermo‐optic effect of lithium niobate, a novel and versatile Mach–Zehnder interferometer on lithium niobate on insulator for polarization handling and multiplexing is proposed and implemented. Its versatile configurations, including but not limited to a polarization‐insensitive switch and a polarization beam splitter, have important implications for large‐scale photonic computing and interconnect.</description><subject>anisotropic</subject><subject>Lithium niobates</subject><subject>LNOI</subject><subject>Mach-Zehnder interferometers</subject><subject>Multiplexing</subject><subject>Phase shifters</subject><subject>Photonics</subject><subject>Polarization</subject><subject>polarization handling</subject><subject>polarization multiplexing</subject><subject>Refractivity</subject><subject>Temperature dependence</subject><subject>thermo‐optic MZI</subject><subject>Thin films</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMKVsyXOLX7Ejn2sKqCVWlIhuHCxnMShLmkcnFRQTv0EJP6wX4KronJkL7OzmtldDQCXGPUxQuS6rJ3vE0QoCowdgQ4WnPaEkPL40At0Cs6aZoEQC8U74HVQ2ca13tU2g49z45duu_lK6jbQqc7m2833s5lXufFwXLXGF8a7pQkNdBWc3CdjWDgPZ67U3n7q1obpSFd5aasXGBBOV2Vr69J8hME5OCl02ZiLX-yCp9ubx-GoN0nuxsPBpJdRHLPwZSG1pHGapUTGMiVMYkxznMo8I0wTISJDpeFc51GKaIxylkuUcY4FjiNDaBdc7ffW3r2tTNOqhVv5KpxURDAcRZxHLKj6e1XmXdN4U6ja26X2a4WR2gWqdoGqQ6DBIPeGd1ua9T9qNZklD3_eH8RZfKE</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Song, Lijia</creator><creator>Liu, Weixi</creator><creator>Guo, Zehao</creator><creator>Li, Hanwen</creator><creator>Xie, Yiwei</creator><creator>Yu, Zejie</creator><creator>Li, Huan</creator><creator>Shi, Yaocheng</creator><creator>Dai, Daoxin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4489-8310</orcidid><orcidid>https://orcid.org/0000-0002-8749-0385</orcidid><orcidid>https://orcid.org/0000-0002-9070-8584</orcidid><orcidid>https://orcid.org/0000-0002-2494-3420</orcidid><orcidid>https://orcid.org/0000-0002-2769-3009</orcidid></search><sort><creationdate>202308</creationdate><title>Anisotropic Thermo‐Optic Mach–Zehnder Interferometer on LNOI for Polarization Handling and Multiplexing</title><author>Song, Lijia ; Liu, Weixi ; Guo, Zehao ; Li, Hanwen ; Xie, Yiwei ; Yu, Zejie ; Li, Huan ; Shi, Yaocheng ; Dai, Daoxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-88f9a937bcb2979b259113d1b9dc25a2884e39e66ad4b0370d5d90c6618174e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anisotropic</topic><topic>Lithium niobates</topic><topic>LNOI</topic><topic>Mach-Zehnder interferometers</topic><topic>Multiplexing</topic><topic>Phase shifters</topic><topic>Photonics</topic><topic>Polarization</topic><topic>polarization handling</topic><topic>polarization multiplexing</topic><topic>Refractivity</topic><topic>Temperature dependence</topic><topic>thermo‐optic MZI</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Lijia</creatorcontrib><creatorcontrib>Liu, Weixi</creatorcontrib><creatorcontrib>Guo, Zehao</creatorcontrib><creatorcontrib>Li, Hanwen</creatorcontrib><creatorcontrib>Xie, Yiwei</creatorcontrib><creatorcontrib>Yu, Zejie</creatorcontrib><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Shi, Yaocheng</creatorcontrib><creatorcontrib>Dai, Daoxin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Lijia</au><au>Liu, Weixi</au><au>Guo, Zehao</au><au>Li, Hanwen</au><au>Xie, Yiwei</au><au>Yu, Zejie</au><au>Li, Huan</au><au>Shi, Yaocheng</au><au>Dai, Daoxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Thermo‐Optic Mach–Zehnder Interferometer on LNOI for Polarization Handling and Multiplexing</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2023-08</date><risdate>2023</risdate><volume>17</volume><issue>8</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Thin‐film lithium niobate (LN) on insulator (LNOI) is emerging as a promising integrated photonic platform. Thermo‐optic (TO) Mach–Zehnder interferometers (MZIs) on LNOI are demonstrated to be a viable and often preferred alternative to their electro‐optic counterparts for low‐speed and static applications, where stability and repeatability are crucial. Harnessing the unique and strong anisotropic TO effect of LN, a novel and versatile anisotropic TO MZI on x‐cut LNOI for polarization handling and multiplexing is proposed and experimentally implemented. Each MZI arm consists of a two‐section anisotropic TO phase shifter along the y‐ and z‐directions of the LN crystal, leading to anisotropic temperature dependence of the effective refractive indices for the transverse‐electric (TE) and transverse‐magnetic (TM) polarizations. A polarization‐insensitive switch and a polarization beam splitter are implemented with the MZI device, which features low excess loss of ≈0.2–1.8 dB and a high extinction ratio of ≈20–45 dB in the telecom C‐band (1530–1565 nm). More intriguingly, arbitrary splitting ratios and even arbitrary combinations of unitary transmission matrices can be further implemented for both polarizations simultaneously. The versatile configurations of this anisotropic TO MZI have important implications for large‐scale photonic computing and interconnect. Harnessing the unique and strong anisotropic thermo‐optic effect of lithium niobate, a novel and versatile Mach–Zehnder interferometer on lithium niobate on insulator for polarization handling and multiplexing is proposed and implemented. Its versatile configurations, including but not limited to a polarization‐insensitive switch and a polarization beam splitter, have important implications for large‐scale photonic computing and interconnect.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202300025</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4489-8310</orcidid><orcidid>https://orcid.org/0000-0002-8749-0385</orcidid><orcidid>https://orcid.org/0000-0002-9070-8584</orcidid><orcidid>https://orcid.org/0000-0002-2494-3420</orcidid><orcidid>https://orcid.org/0000-0002-2769-3009</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2023-08, Vol.17 (8), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2851446645
source Wiley Online Library All Journals
subjects anisotropic
Lithium niobates
LNOI
Mach-Zehnder interferometers
Multiplexing
Phase shifters
Photonics
Polarization
polarization handling
polarization multiplexing
Refractivity
Temperature dependence
thermo‐optic MZI
Thin films
title Anisotropic Thermo‐Optic Mach–Zehnder Interferometer on LNOI for Polarization Handling and Multiplexing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Thermo%E2%80%90Optic%20Mach%E2%80%93Zehnder%20Interferometer%20on%20LNOI%20for%20Polarization%20Handling%20and%20Multiplexing&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Song,%20Lijia&rft.date=2023-08&rft.volume=17&rft.issue=8&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202300025&rft_dat=%3Cproquest_cross%3E2851446645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851446645&rft_id=info:pmid/&rfr_iscdi=true