Dynamically Stabilized Electronic Regulation and Electrochemical Reconstruction in Co and S Atomic Pair Doped Fe3O4 for Water Oxidation

The electronic regulation and surface reconstruction of earth‐abundant electrocatalysts are essential to efficient oxygen evolution reaction (OER). Here, an inverse‐spinel Co,S atomic pair codoped Fe3O4 grown on iron foam (Co,S‐Fe3O4/IF) is fabricated as a cost‐effective electrocatalyst for OER. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-08, Vol.19 (33), p.n/a
Hauptverfasser: Liu, Hai‐Jun, Zhang, Shuo, Zhou, Ya‐Nan, Yu, Wen‐Li, Ma, Yu, Wang, Shu‐Tao, Chai, Yong‐Ming, Dong, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Liu, Hai‐Jun
Zhang, Shuo
Zhou, Ya‐Nan
Yu, Wen‐Li
Ma, Yu
Wang, Shu‐Tao
Chai, Yong‐Ming
Dong, Bin
description The electronic regulation and surface reconstruction of earth‐abundant electrocatalysts are essential to efficient oxygen evolution reaction (OER). Here, an inverse‐spinel Co,S atomic pair codoped Fe3O4 grown on iron foam (Co,S‐Fe3O4/IF) is fabricated as a cost‐effective electrocatalyst for OER. This strategy of Co and S atomic pair directional codoping features accelerates surface reconstruction and dynamically stabilizes electronic regulation. CoS atomic pairs doped in the Fe3O4 crystal favor controllable surface reconstruction via sulfur leaching, forming oxygen vacancies and Co doping on the surface of reconstructed FeOOH (Co‐FeOOH‐Ov/IF). Before and after surface reconstruction via in situ electrochemical process, the Fe sites with octahedral field dynamically maintains an appropriate electronic structure for OER intermediates, thus exhibiting consistently excellent OER performance. The electrochemically tuned Fe‐based electrodes exhibit a low overpotential of 349 mV at a current density of 1000 mA cm−2, a slight Tafel slope of 43.3 mV dec−1, and exceptional long‐term electrolysis stability of 200 h in an alkaline medium. Density functional theory calculations illustrate the electronic regulation of Fe sites, changes in Gibbs free energies, and the breaking of the restrictive scaling relation between OER intermediates. This work provides a promising directional codoping strategy for developing precatalysts for large‐scale water‐splitting systems. CoS atomic pair directional co‐doped Fe3O4 as an oxygen evolution reaction precatalyst that display a facile in situ electrochemical reconstruction process to finally achieve a Co‐doped FeOOH with oxygen vacancies is designed. CoS atomic pairs doped in the Fe3O4 crystal favour controllable surface reconstruction via sulphur leaching, forming oxygen vacancies and Co doping on the surface of reconstructed FeOOH.
doi_str_mv 10.1002/smll.202301255
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2851446621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2851446621</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-e36e4243c26d36805d3a184b46eaa2604a18cfa4ed2d1d43a84566195288be2a3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw5WyJc4q9dkx6rPoHUlARBXG0XMcFV24cnEQQXoDXJk1RTruj-XZWGoSuKRlRQuC23Ds3AgKMUIjjEzSggrJIJDA-7XdKztFFWe4IYRT43QD9zppc7a1WzjV4XamNdfbHZHjujK6Cz63Gz-a9dqqyPscq7x39Ybqz1tY-L6tQ6w6xOZ76DlzjSeVbBj8pG_DMF23swrAVx1sf8JuqTMCrb5t10ZfobKtcaa7-5xC9LuYv0_soXS0fppM0KoCxODJMGA6caRAZEwmJM6ZowjdcGKVAEN4qvVXcZJDRjDOV8FgIOo4hSTYGFBuim2NuEfxnbcpK7nwd8valhCSmnAsBtKXGR-rLOtPIIti9Co2kRB6aloemZd-0XD-maa_YH25adSo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851446621</pqid></control><display><type>article</type><title>Dynamically Stabilized Electronic Regulation and Electrochemical Reconstruction in Co and S Atomic Pair Doped Fe3O4 for Water Oxidation</title><source>Access via Wiley Online Library</source><creator>Liu, Hai‐Jun ; Zhang, Shuo ; Zhou, Ya‐Nan ; Yu, Wen‐Li ; Ma, Yu ; Wang, Shu‐Tao ; Chai, Yong‐Ming ; Dong, Bin</creator><creatorcontrib>Liu, Hai‐Jun ; Zhang, Shuo ; Zhou, Ya‐Nan ; Yu, Wen‐Li ; Ma, Yu ; Wang, Shu‐Tao ; Chai, Yong‐Ming ; Dong, Bin</creatorcontrib><description>The electronic regulation and surface reconstruction of earth‐abundant electrocatalysts are essential to efficient oxygen evolution reaction (OER). Here, an inverse‐spinel Co,S atomic pair codoped Fe3O4 grown on iron foam (Co,S‐Fe3O4/IF) is fabricated as a cost‐effective electrocatalyst for OER. This strategy of Co and S atomic pair directional codoping features accelerates surface reconstruction and dynamically stabilizes electronic regulation. CoS atomic pairs doped in the Fe3O4 crystal favor controllable surface reconstruction via sulfur leaching, forming oxygen vacancies and Co doping on the surface of reconstructed FeOOH (Co‐FeOOH‐Ov/IF). Before and after surface reconstruction via in situ electrochemical process, the Fe sites with octahedral field dynamically maintains an appropriate electronic structure for OER intermediates, thus exhibiting consistently excellent OER performance. The electrochemically tuned Fe‐based electrodes exhibit a low overpotential of 349 mV at a current density of 1000 mA cm−2, a slight Tafel slope of 43.3 mV dec−1, and exceptional long‐term electrolysis stability of 200 h in an alkaline medium. Density functional theory calculations illustrate the electronic regulation of Fe sites, changes in Gibbs free energies, and the breaking of the restrictive scaling relation between OER intermediates. This work provides a promising directional codoping strategy for developing precatalysts for large‐scale water‐splitting systems. CoS atomic pair directional co‐doped Fe3O4 as an oxygen evolution reaction precatalyst that display a facile in situ electrochemical reconstruction process to finally achieve a Co‐doped FeOOH with oxygen vacancies is designed. CoS atomic pairs doped in the Fe3O4 crystal favour controllable surface reconstruction via sulphur leaching, forming oxygen vacancies and Co doping on the surface of reconstructed FeOOH.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202301255</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Co and S atomic pair doped Fe 3O 4 ; Controllability ; Co‐doped FeOOH ; Density functional theory ; Electrocatalysts ; Electrolysis ; Electronic structure ; Ferric hydroxide ; In situ leaching ; Iron oxides ; Leaching ; Metal foams ; Nanotechnology ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; oxygen vacancy ; Reconstruction ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-08, Vol.19 (33), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4817-6289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202301255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202301255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Liu, Hai‐Jun</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Zhou, Ya‐Nan</creatorcontrib><creatorcontrib>Yu, Wen‐Li</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Wang, Shu‐Tao</creatorcontrib><creatorcontrib>Chai, Yong‐Ming</creatorcontrib><creatorcontrib>Dong, Bin</creatorcontrib><title>Dynamically Stabilized Electronic Regulation and Electrochemical Reconstruction in Co and S Atomic Pair Doped Fe3O4 for Water Oxidation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The electronic regulation and surface reconstruction of earth‐abundant electrocatalysts are essential to efficient oxygen evolution reaction (OER). Here, an inverse‐spinel Co,S atomic pair codoped Fe3O4 grown on iron foam (Co,S‐Fe3O4/IF) is fabricated as a cost‐effective electrocatalyst for OER. This strategy of Co and S atomic pair directional codoping features accelerates surface reconstruction and dynamically stabilizes electronic regulation. CoS atomic pairs doped in the Fe3O4 crystal favor controllable surface reconstruction via sulfur leaching, forming oxygen vacancies and Co doping on the surface of reconstructed FeOOH (Co‐FeOOH‐Ov/IF). Before and after surface reconstruction via in situ electrochemical process, the Fe sites with octahedral field dynamically maintains an appropriate electronic structure for OER intermediates, thus exhibiting consistently excellent OER performance. The electrochemically tuned Fe‐based electrodes exhibit a low overpotential of 349 mV at a current density of 1000 mA cm−2, a slight Tafel slope of 43.3 mV dec−1, and exceptional long‐term electrolysis stability of 200 h in an alkaline medium. Density functional theory calculations illustrate the electronic regulation of Fe sites, changes in Gibbs free energies, and the breaking of the restrictive scaling relation between OER intermediates. This work provides a promising directional codoping strategy for developing precatalysts for large‐scale water‐splitting systems. CoS atomic pair directional co‐doped Fe3O4 as an oxygen evolution reaction precatalyst that display a facile in situ electrochemical reconstruction process to finally achieve a Co‐doped FeOOH with oxygen vacancies is designed. CoS atomic pairs doped in the Fe3O4 crystal favour controllable surface reconstruction via sulphur leaching, forming oxygen vacancies and Co doping on the surface of reconstructed FeOOH.</description><subject>Co and S atomic pair doped Fe 3O 4</subject><subject>Controllability</subject><subject>Co‐doped FeOOH</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electronic structure</subject><subject>Ferric hydroxide</subject><subject>In situ leaching</subject><subject>Iron oxides</subject><subject>Leaching</subject><subject>Metal foams</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>oxygen vacancy</subject><subject>Reconstruction</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqVw5WyJc4q9dkx6rPoHUlARBXG0XMcFV24cnEQQXoDXJk1RTruj-XZWGoSuKRlRQuC23Ds3AgKMUIjjEzSggrJIJDA-7XdKztFFWe4IYRT43QD9zppc7a1WzjV4XamNdfbHZHjujK6Cz63Gz-a9dqqyPscq7x39Ybqz1tY-L6tQ6w6xOZ76DlzjSeVbBj8pG_DMF23swrAVx1sf8JuqTMCrb5t10ZfobKtcaa7-5xC9LuYv0_soXS0fppM0KoCxODJMGA6caRAZEwmJM6ZowjdcGKVAEN4qvVXcZJDRjDOV8FgIOo4hSTYGFBuim2NuEfxnbcpK7nwd8valhCSmnAsBtKXGR-rLOtPIIti9Co2kRB6aloemZd-0XD-maa_YH25adSo</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Liu, Hai‐Jun</creator><creator>Zhang, Shuo</creator><creator>Zhou, Ya‐Nan</creator><creator>Yu, Wen‐Li</creator><creator>Ma, Yu</creator><creator>Wang, Shu‐Tao</creator><creator>Chai, Yong‐Ming</creator><creator>Dong, Bin</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4817-6289</orcidid></search><sort><creationdate>20230816</creationdate><title>Dynamically Stabilized Electronic Regulation and Electrochemical Reconstruction in Co and S Atomic Pair Doped Fe3O4 for Water Oxidation</title><author>Liu, Hai‐Jun ; Zhang, Shuo ; Zhou, Ya‐Nan ; Yu, Wen‐Li ; Ma, Yu ; Wang, Shu‐Tao ; Chai, Yong‐Ming ; Dong, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-e36e4243c26d36805d3a184b46eaa2604a18cfa4ed2d1d43a84566195288be2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Co and S atomic pair doped Fe 3O 4</topic><topic>Controllability</topic><topic>Co‐doped FeOOH</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electronic structure</topic><topic>Ferric hydroxide</topic><topic>In situ leaching</topic><topic>Iron oxides</topic><topic>Leaching</topic><topic>Metal foams</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>oxygen vacancy</topic><topic>Reconstruction</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hai‐Jun</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Zhou, Ya‐Nan</creatorcontrib><creatorcontrib>Yu, Wen‐Li</creatorcontrib><creatorcontrib>Ma, Yu</creatorcontrib><creatorcontrib>Wang, Shu‐Tao</creatorcontrib><creatorcontrib>Chai, Yong‐Ming</creatorcontrib><creatorcontrib>Dong, Bin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hai‐Jun</au><au>Zhang, Shuo</au><au>Zhou, Ya‐Nan</au><au>Yu, Wen‐Li</au><au>Ma, Yu</au><au>Wang, Shu‐Tao</au><au>Chai, Yong‐Ming</au><au>Dong, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamically Stabilized Electronic Regulation and Electrochemical Reconstruction in Co and S Atomic Pair Doped Fe3O4 for Water Oxidation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2023-08-16</date><risdate>2023</risdate><volume>19</volume><issue>33</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The electronic regulation and surface reconstruction of earth‐abundant electrocatalysts are essential to efficient oxygen evolution reaction (OER). Here, an inverse‐spinel Co,S atomic pair codoped Fe3O4 grown on iron foam (Co,S‐Fe3O4/IF) is fabricated as a cost‐effective electrocatalyst for OER. This strategy of Co and S atomic pair directional codoping features accelerates surface reconstruction and dynamically stabilizes electronic regulation. CoS atomic pairs doped in the Fe3O4 crystal favor controllable surface reconstruction via sulfur leaching, forming oxygen vacancies and Co doping on the surface of reconstructed FeOOH (Co‐FeOOH‐Ov/IF). Before and after surface reconstruction via in situ electrochemical process, the Fe sites with octahedral field dynamically maintains an appropriate electronic structure for OER intermediates, thus exhibiting consistently excellent OER performance. The electrochemically tuned Fe‐based electrodes exhibit a low overpotential of 349 mV at a current density of 1000 mA cm−2, a slight Tafel slope of 43.3 mV dec−1, and exceptional long‐term electrolysis stability of 200 h in an alkaline medium. Density functional theory calculations illustrate the electronic regulation of Fe sites, changes in Gibbs free energies, and the breaking of the restrictive scaling relation between OER intermediates. This work provides a promising directional codoping strategy for developing precatalysts for large‐scale water‐splitting systems. CoS atomic pair directional co‐doped Fe3O4 as an oxygen evolution reaction precatalyst that display a facile in situ electrochemical reconstruction process to finally achieve a Co‐doped FeOOH with oxygen vacancies is designed. CoS atomic pairs doped in the Fe3O4 crystal favour controllable surface reconstruction via sulphur leaching, forming oxygen vacancies and Co doping on the surface of reconstructed FeOOH.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202301255</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4817-6289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-08, Vol.19 (33), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2851446621
source Access via Wiley Online Library
subjects Co and S atomic pair doped Fe 3O 4
Controllability
Co‐doped FeOOH
Density functional theory
Electrocatalysts
Electrolysis
Electronic structure
Ferric hydroxide
In situ leaching
Iron oxides
Leaching
Metal foams
Nanotechnology
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
oxygen vacancy
Reconstruction
Water splitting
title Dynamically Stabilized Electronic Regulation and Electrochemical Reconstruction in Co and S Atomic Pair Doped Fe3O4 for Water Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamically%20Stabilized%20Electronic%20Regulation%20and%20Electrochemical%20Reconstruction%20in%20Co%20and%20S%20Atomic%20Pair%20Doped%20Fe3O4%20for%20Water%20Oxidation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Liu,%20Hai%E2%80%90Jun&rft.date=2023-08-16&rft.volume=19&rft.issue=33&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202301255&rft_dat=%3Cproquest_wiley%3E2851446621%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851446621&rft_id=info:pmid/&rfr_iscdi=true