Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor
The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 20 |
creator | He, Yu Yang, Ping Qian, Feng Geng, Weifeng Zheng, Bingwei Ren, Xiaoqiao Hu, Guangmin |
description | The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they still suffer from the challenge of reaching a balance between resolution preservation and resisting the heavy random noise. As an alternative, this letter proposes a seismic volumetric local slope estimation method named the multiscale gradient structure tensor (MGST), combining GST with the 3-D multiscale Gaussian pyramid (GP). In this regard, to preserve the details of the original resolution and fully exploit the unique information at different scales, the GP is reconstructed in 3-D space by decomposing the data into multiple scales. After that, we attempt to employ the GST to derive the local slopes in two directions at each scale, along with a corresponding quality metric. Finally, within the Kalman filter framework, the local slope of each scale is sequentially integrated using the quality metric as the weighting mechanism, resulting in an accurate and robust estimation. Experiments on both synthetic and real field datasets indicate that the proposed MGST method outperforms the traditional GST and plane-wave destruction (PWD) methods. |
doi_str_mv | 10.1109/LGRS.2023.3298325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2851366182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10192420</ieee_id><sourcerecordid>2851366182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-74d8034b323ea8ad8d177c3b098e48b279454d8403345eb9798eebe5f9e368c63</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n7vJUYpWYUVwW_EW9mMqKdtNTbIH_71Z2oOneRmemWEehG4pWVBK9EO5-qgWjDC-4EwrzuQZmlEpVUZkQc-nLGQmtfq6RFch7AhhQqlihtYV2LC3Lf50_biH6FMsXVv3uOrdAfBTiHZfR-sGvAl2-MZvYx9tSADgla87C0PEVfRjG0cPeA1DcP4aXWzrPsDNqc7R5vlpvXzJyvfV6_KxzFom8pgVolOEi4YzDrWqO9XRomh5Q7QCoRpWaCETIgjnQkKji9SHBuRWA89Vm_M5uj_uPXj3M0KIZudGP6SThilJeZ5TxRJFj1TrXQgetubg00_-11BiJnlmkmcmeeYkL83cHWcsAPzjqWaCEf4H7NxrSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851366182</pqid></control><display><type>article</type><title>Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor</title><source>IEEE Electronic Library (IEL)</source><creator>He, Yu ; Yang, Ping ; Qian, Feng ; Geng, Weifeng ; Zheng, Bingwei ; Ren, Xiaoqiao ; Hu, Guangmin</creator><creatorcontrib>He, Yu ; Yang, Ping ; Qian, Feng ; Geng, Weifeng ; Zheng, Bingwei ; Ren, Xiaoqiao ; Hu, Guangmin</creatorcontrib><description>The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they still suffer from the challenge of reaching a balance between resolution preservation and resisting the heavy random noise. As an alternative, this letter proposes a seismic volumetric local slope estimation method named the multiscale gradient structure tensor (MGST), combining GST with the 3-D multiscale Gaussian pyramid (GP). In this regard, to preserve the details of the original resolution and fully exploit the unique information at different scales, the GP is reconstructed in 3-D space by decomposing the data into multiple scales. After that, we attempt to employ the GST to derive the local slopes in two directions at each scale, along with a corresponding quality metric. Finally, within the Kalman filter framework, the local slope of each scale is sequentially integrated using the quality metric as the weighting mechanism, resulting in an accurate and robust estimation. Experiments on both synthetic and real field datasets indicate that the proposed MGST method outperforms the traditional GST and plane-wave destruction (PWD) methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3298325</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Earthquakes ; Eigenvalues and eigenfunctions ; Estimation ; Gaussian pyramid (GP) ; gradient structure tensor (GST) ; Kalman filters ; Kernel ; Mathematical analysis ; multiscale GST (MGST) ; Noise measurement ; Plane waves ; Random noise ; Reflection ; Seismic activity ; Seismic surveys ; Slope ; Slopes ; Smoothing methods ; Tensors ; Tracking ; Volumetric local slope</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-74d8034b323ea8ad8d177c3b098e48b279454d8403345eb9798eebe5f9e368c63</cites><orcidid>0009-0001-9069-9331 ; 0000-0002-4761-3598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10192420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10192420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Geng, Weifeng</creatorcontrib><creatorcontrib>Zheng, Bingwei</creatorcontrib><creatorcontrib>Ren, Xiaoqiao</creatorcontrib><creatorcontrib>Hu, Guangmin</creatorcontrib><title>Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they still suffer from the challenge of reaching a balance between resolution preservation and resisting the heavy random noise. As an alternative, this letter proposes a seismic volumetric local slope estimation method named the multiscale gradient structure tensor (MGST), combining GST with the 3-D multiscale Gaussian pyramid (GP). In this regard, to preserve the details of the original resolution and fully exploit the unique information at different scales, the GP is reconstructed in 3-D space by decomposing the data into multiple scales. After that, we attempt to employ the GST to derive the local slopes in two directions at each scale, along with a corresponding quality metric. Finally, within the Kalman filter framework, the local slope of each scale is sequentially integrated using the quality metric as the weighting mechanism, resulting in an accurate and robust estimation. Experiments on both synthetic and real field datasets indicate that the proposed MGST method outperforms the traditional GST and plane-wave destruction (PWD) methods.</description><subject>Earthquakes</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimation</subject><subject>Gaussian pyramid (GP)</subject><subject>gradient structure tensor (GST)</subject><subject>Kalman filters</subject><subject>Kernel</subject><subject>Mathematical analysis</subject><subject>multiscale GST (MGST)</subject><subject>Noise measurement</subject><subject>Plane waves</subject><subject>Random noise</subject><subject>Reflection</subject><subject>Seismic activity</subject><subject>Seismic surveys</subject><subject>Slope</subject><subject>Slopes</subject><subject>Smoothing methods</subject><subject>Tensors</subject><subject>Tracking</subject><subject>Volumetric local slope</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n7vJUYpWYUVwW_EW9mMqKdtNTbIH_71Z2oOneRmemWEehG4pWVBK9EO5-qgWjDC-4EwrzuQZmlEpVUZkQc-nLGQmtfq6RFch7AhhQqlihtYV2LC3Lf50_biH6FMsXVv3uOrdAfBTiHZfR-sGvAl2-MZvYx9tSADgla87C0PEVfRjG0cPeA1DcP4aXWzrPsDNqc7R5vlpvXzJyvfV6_KxzFom8pgVolOEi4YzDrWqO9XRomh5Q7QCoRpWaCETIgjnQkKji9SHBuRWA89Vm_M5uj_uPXj3M0KIZudGP6SThilJeZ5TxRJFj1TrXQgetubg00_-11BiJnlmkmcmeeYkL83cHWcsAPzjqWaCEf4H7NxrSg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>He, Yu</creator><creator>Yang, Ping</creator><creator>Qian, Feng</creator><creator>Geng, Weifeng</creator><creator>Zheng, Bingwei</creator><creator>Ren, Xiaoqiao</creator><creator>Hu, Guangmin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0001-9069-9331</orcidid><orcidid>https://orcid.org/0000-0002-4761-3598</orcidid></search><sort><creationdate>20230101</creationdate><title>Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor</title><author>He, Yu ; Yang, Ping ; Qian, Feng ; Geng, Weifeng ; Zheng, Bingwei ; Ren, Xiaoqiao ; Hu, Guangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-74d8034b323ea8ad8d177c3b098e48b279454d8403345eb9798eebe5f9e368c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earthquakes</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimation</topic><topic>Gaussian pyramid (GP)</topic><topic>gradient structure tensor (GST)</topic><topic>Kalman filters</topic><topic>Kernel</topic><topic>Mathematical analysis</topic><topic>multiscale GST (MGST)</topic><topic>Noise measurement</topic><topic>Plane waves</topic><topic>Random noise</topic><topic>Reflection</topic><topic>Seismic activity</topic><topic>Seismic surveys</topic><topic>Slope</topic><topic>Slopes</topic><topic>Smoothing methods</topic><topic>Tensors</topic><topic>Tracking</topic><topic>Volumetric local slope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Geng, Weifeng</creatorcontrib><creatorcontrib>Zheng, Bingwei</creatorcontrib><creatorcontrib>Ren, Xiaoqiao</creatorcontrib><creatorcontrib>Hu, Guangmin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Yu</au><au>Yang, Ping</au><au>Qian, Feng</au><au>Geng, Weifeng</au><au>Zheng, Bingwei</au><au>Ren, Xiaoqiao</au><au>Hu, Guangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they still suffer from the challenge of reaching a balance between resolution preservation and resisting the heavy random noise. As an alternative, this letter proposes a seismic volumetric local slope estimation method named the multiscale gradient structure tensor (MGST), combining GST with the 3-D multiscale Gaussian pyramid (GP). In this regard, to preserve the details of the original resolution and fully exploit the unique information at different scales, the GP is reconstructed in 3-D space by decomposing the data into multiple scales. After that, we attempt to employ the GST to derive the local slopes in two directions at each scale, along with a corresponding quality metric. Finally, within the Kalman filter framework, the local slope of each scale is sequentially integrated using the quality metric as the weighting mechanism, resulting in an accurate and robust estimation. Experiments on both synthetic and real field datasets indicate that the proposed MGST method outperforms the traditional GST and plane-wave destruction (PWD) methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3298325</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-9069-9331</orcidid><orcidid>https://orcid.org/0000-0002-4761-3598</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2851366182 |
source | IEEE Electronic Library (IEL) |
subjects | Earthquakes Eigenvalues and eigenfunctions Estimation Gaussian pyramid (GP) gradient structure tensor (GST) Kalman filters Kernel Mathematical analysis multiscale GST (MGST) Noise measurement Plane waves Random noise Reflection Seismic activity Seismic surveys Slope Slopes Smoothing methods Tensors Tracking Volumetric local slope |
title | Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20Volumetric%20Local%20Slope%20Estimation%20Using%20Multiscale%20Gradient%20Structure%20Tensor&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=He,%20Yu&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3298325&rft_dat=%3Cproquest_RIE%3E2851366182%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851366182&rft_id=info:pmid/&rft_ieee_id=10192420&rfr_iscdi=true |