Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor

The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1
Hauptverfasser: He, Yu, Yang, Ping, Qian, Feng, Geng, Weifeng, Zheng, Bingwei, Ren, Xiaoqiao, Hu, Guangmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 20
creator He, Yu
Yang, Ping
Qian, Feng
Geng, Weifeng
Zheng, Bingwei
Ren, Xiaoqiao
Hu, Guangmin
description The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they still suffer from the challenge of reaching a balance between resolution preservation and resisting the heavy random noise. As an alternative, this letter proposes a seismic volumetric local slope estimation method named the multiscale gradient structure tensor (MGST), combining GST with the 3-D multiscale Gaussian pyramid (GP). In this regard, to preserve the details of the original resolution and fully exploit the unique information at different scales, the GP is reconstructed in 3-D space by decomposing the data into multiple scales. After that, we attempt to employ the GST to derive the local slopes in two directions at each scale, along with a corresponding quality metric. Finally, within the Kalman filter framework, the local slope of each scale is sequentially integrated using the quality metric as the weighting mechanism, resulting in an accurate and robust estimation. Experiments on both synthetic and real field datasets indicate that the proposed MGST method outperforms the traditional GST and plane-wave destruction (PWD) methods.
doi_str_mv 10.1109/LGRS.2023.3298325
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2851366182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10192420</ieee_id><sourcerecordid>2851366182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-74d8034b323ea8ad8d177c3b098e48b279454d8403345eb9798eebe5f9e368c63</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n7vJUYpWYUVwW_EW9mMqKdtNTbIH_71Z2oOneRmemWEehG4pWVBK9EO5-qgWjDC-4EwrzuQZmlEpVUZkQc-nLGQmtfq6RFch7AhhQqlihtYV2LC3Lf50_biH6FMsXVv3uOrdAfBTiHZfR-sGvAl2-MZvYx9tSADgla87C0PEVfRjG0cPeA1DcP4aXWzrPsDNqc7R5vlpvXzJyvfV6_KxzFom8pgVolOEi4YzDrWqO9XRomh5Q7QCoRpWaCETIgjnQkKji9SHBuRWA89Vm_M5uj_uPXj3M0KIZudGP6SThilJeZ5TxRJFj1TrXQgetubg00_-11BiJnlmkmcmeeYkL83cHWcsAPzjqWaCEf4H7NxrSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851366182</pqid></control><display><type>article</type><title>Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor</title><source>IEEE Electronic Library (IEL)</source><creator>He, Yu ; Yang, Ping ; Qian, Feng ; Geng, Weifeng ; Zheng, Bingwei ; Ren, Xiaoqiao ; Hu, Guangmin</creator><creatorcontrib>He, Yu ; Yang, Ping ; Qian, Feng ; Geng, Weifeng ; Zheng, Bingwei ; Ren, Xiaoqiao ; Hu, Guangmin</creatorcontrib><description>The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they still suffer from the challenge of reaching a balance between resolution preservation and resisting the heavy random noise. As an alternative, this letter proposes a seismic volumetric local slope estimation method named the multiscale gradient structure tensor (MGST), combining GST with the 3-D multiscale Gaussian pyramid (GP). In this regard, to preserve the details of the original resolution and fully exploit the unique information at different scales, the GP is reconstructed in 3-D space by decomposing the data into multiple scales. After that, we attempt to employ the GST to derive the local slopes in two directions at each scale, along with a corresponding quality metric. Finally, within the Kalman filter framework, the local slope of each scale is sequentially integrated using the quality metric as the weighting mechanism, resulting in an accurate and robust estimation. Experiments on both synthetic and real field datasets indicate that the proposed MGST method outperforms the traditional GST and plane-wave destruction (PWD) methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3298325</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Earthquakes ; Eigenvalues and eigenfunctions ; Estimation ; Gaussian pyramid (GP) ; gradient structure tensor (GST) ; Kalman filters ; Kernel ; Mathematical analysis ; multiscale GST (MGST) ; Noise measurement ; Plane waves ; Random noise ; Reflection ; Seismic activity ; Seismic surveys ; Slope ; Slopes ; Smoothing methods ; Tensors ; Tracking ; Volumetric local slope</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-74d8034b323ea8ad8d177c3b098e48b279454d8403345eb9798eebe5f9e368c63</cites><orcidid>0009-0001-9069-9331 ; 0000-0002-4761-3598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10192420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10192420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Geng, Weifeng</creatorcontrib><creatorcontrib>Zheng, Bingwei</creatorcontrib><creatorcontrib>Ren, Xiaoqiao</creatorcontrib><creatorcontrib>Hu, Guangmin</creatorcontrib><title>Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they still suffer from the challenge of reaching a balance between resolution preservation and resisting the heavy random noise. As an alternative, this letter proposes a seismic volumetric local slope estimation method named the multiscale gradient structure tensor (MGST), combining GST with the 3-D multiscale Gaussian pyramid (GP). In this regard, to preserve the details of the original resolution and fully exploit the unique information at different scales, the GP is reconstructed in 3-D space by decomposing the data into multiple scales. After that, we attempt to employ the GST to derive the local slopes in two directions at each scale, along with a corresponding quality metric. Finally, within the Kalman filter framework, the local slope of each scale is sequentially integrated using the quality metric as the weighting mechanism, resulting in an accurate and robust estimation. Experiments on both synthetic and real field datasets indicate that the proposed MGST method outperforms the traditional GST and plane-wave destruction (PWD) methods.</description><subject>Earthquakes</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimation</subject><subject>Gaussian pyramid (GP)</subject><subject>gradient structure tensor (GST)</subject><subject>Kalman filters</subject><subject>Kernel</subject><subject>Mathematical analysis</subject><subject>multiscale GST (MGST)</subject><subject>Noise measurement</subject><subject>Plane waves</subject><subject>Random noise</subject><subject>Reflection</subject><subject>Seismic activity</subject><subject>Seismic surveys</subject><subject>Slope</subject><subject>Slopes</subject><subject>Smoothing methods</subject><subject>Tensors</subject><subject>Tracking</subject><subject>Volumetric local slope</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1n7vJUYpWYUVwW_EW9mMqKdtNTbIH_71Z2oOneRmemWEehG4pWVBK9EO5-qgWjDC-4EwrzuQZmlEpVUZkQc-nLGQmtfq6RFch7AhhQqlihtYV2LC3Lf50_biH6FMsXVv3uOrdAfBTiHZfR-sGvAl2-MZvYx9tSADgla87C0PEVfRjG0cPeA1DcP4aXWzrPsDNqc7R5vlpvXzJyvfV6_KxzFom8pgVolOEi4YzDrWqO9XRomh5Q7QCoRpWaCETIgjnQkKji9SHBuRWA89Vm_M5uj_uPXj3M0KIZudGP6SThilJeZ5TxRJFj1TrXQgetubg00_-11BiJnlmkmcmeeYkL83cHWcsAPzjqWaCEf4H7NxrSg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>He, Yu</creator><creator>Yang, Ping</creator><creator>Qian, Feng</creator><creator>Geng, Weifeng</creator><creator>Zheng, Bingwei</creator><creator>Ren, Xiaoqiao</creator><creator>Hu, Guangmin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0001-9069-9331</orcidid><orcidid>https://orcid.org/0000-0002-4761-3598</orcidid></search><sort><creationdate>20230101</creationdate><title>Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor</title><author>He, Yu ; Yang, Ping ; Qian, Feng ; Geng, Weifeng ; Zheng, Bingwei ; Ren, Xiaoqiao ; Hu, Guangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-74d8034b323ea8ad8d177c3b098e48b279454d8403345eb9798eebe5f9e368c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earthquakes</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimation</topic><topic>Gaussian pyramid (GP)</topic><topic>gradient structure tensor (GST)</topic><topic>Kalman filters</topic><topic>Kernel</topic><topic>Mathematical analysis</topic><topic>multiscale GST (MGST)</topic><topic>Noise measurement</topic><topic>Plane waves</topic><topic>Random noise</topic><topic>Reflection</topic><topic>Seismic activity</topic><topic>Seismic surveys</topic><topic>Slope</topic><topic>Slopes</topic><topic>Smoothing methods</topic><topic>Tensors</topic><topic>Tracking</topic><topic>Volumetric local slope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yu</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Geng, Weifeng</creatorcontrib><creatorcontrib>Zheng, Bingwei</creatorcontrib><creatorcontrib>Ren, Xiaoqiao</creatorcontrib><creatorcontrib>Hu, Guangmin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Yu</au><au>Yang, Ping</au><au>Qian, Feng</au><au>Geng, Weifeng</au><au>Zheng, Bingwei</au><au>Ren, Xiaoqiao</au><au>Hu, Guangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The volumetric local slope, which indicates the orientation of seismic events, plays a prominent role in the subsequent geological interpretation typically including horizon tracking, seismic facies analysis, and fault interpretation. Although numerous existing estimation methods are available, they still suffer from the challenge of reaching a balance between resolution preservation and resisting the heavy random noise. As an alternative, this letter proposes a seismic volumetric local slope estimation method named the multiscale gradient structure tensor (MGST), combining GST with the 3-D multiscale Gaussian pyramid (GP). In this regard, to preserve the details of the original resolution and fully exploit the unique information at different scales, the GP is reconstructed in 3-D space by decomposing the data into multiple scales. After that, we attempt to employ the GST to derive the local slopes in two directions at each scale, along with a corresponding quality metric. Finally, within the Kalman filter framework, the local slope of each scale is sequentially integrated using the quality metric as the weighting mechanism, resulting in an accurate and robust estimation. Experiments on both synthetic and real field datasets indicate that the proposed MGST method outperforms the traditional GST and plane-wave destruction (PWD) methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3298325</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-9069-9331</orcidid><orcidid>https://orcid.org/0000-0002-4761-3598</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2851366182
source IEEE Electronic Library (IEL)
subjects Earthquakes
Eigenvalues and eigenfunctions
Estimation
Gaussian pyramid (GP)
gradient structure tensor (GST)
Kalman filters
Kernel
Mathematical analysis
multiscale GST (MGST)
Noise measurement
Plane waves
Random noise
Reflection
Seismic activity
Seismic surveys
Slope
Slopes
Smoothing methods
Tensors
Tracking
Volumetric local slope
title Seismic Volumetric Local Slope Estimation Using Multiscale Gradient Structure Tensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20Volumetric%20Local%20Slope%20Estimation%20Using%20Multiscale%20Gradient%20Structure%20Tensor&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=He,%20Yu&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3298325&rft_dat=%3Cproquest_RIE%3E2851366182%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851366182&rft_id=info:pmid/&rft_ieee_id=10192420&rfr_iscdi=true