Large-Scale Detector Testing for the GAPS Si(Li) Tracker
Lithium-drifted silicon [Si(Li)] has been used for decades as an ionizing radiation detector in nuclear, particle, and astrophysics experiments, though such detectors have frequently been limited to small sizes (few cm 2 ) and cryogenic operating temperatures. The 10-cm-diameter Si(Li) detectors dev...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2023-08, Vol.70 (8), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on nuclear science |
container_volume | 70 |
creator | Xiao, Mengjiao Stoessl, Achim Roach, Brandon Gerrity, Cory Bouche, Ian Bridges, Gabriel Von Doetinchem, Philip Hailey, Charles J. Kraych, Derik Katt, Anika Law, Michael Lowell, Alexander Martinez, Evan Perez, Kerstin Reed, Maggie Rodriguez, Chelsea Saffold, Nathan Stringfield, Ceaser Weiner, Hershel Yee, Kelsey |
description | Lithium-drifted silicon [Si(Li)] has been used for decades as an ionizing radiation detector in nuclear, particle, and astrophysics experiments, though such detectors have frequently been limited to small sizes (few cm 2 ) and cryogenic operating temperatures. The 10-cm-diameter Si(Li) detectors developed for the General Antiparticle Spectrometer (GAPS) balloon-borne dark matter experiment are novel particularly for their requirements of low cost, large sensitive area (~10 m 2 for the full 1440-detector array), high temperatures (near -40 °C), and energy resolution below 4 keV FWHM for 20-100-keV x-rays. Previous works have discussed the manufacturing, passivation, and small-scale testing of prototype GAPS Si(Li) detectors. Here we show for the first time the results from detailed characterization of over 1100 flight detectors, illustrating the consistent intrinsic low-noise performance of a large sample of GAPS detectors. This work demonstrates the feasibility of large-area and low-cost Si(Li) detector arrays for next-generation astrophysics and nuclear physics applications. |
doi_str_mv | 10.1109/TNS.2023.3291235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2851334599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10168972</ieee_id><sourcerecordid>2851334599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f79c0994d37c5bbcb8431d3d269ad3c93abad12f73c09880a12a6f2dbb75f7dc3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYoEhxfbFtW-s-ChIESAlzJbjj5JSmuKkA_8eV-3AdHfS896dHkIuGZ0wRvGufq0mnHKYAEfGQRyRERNC5UxIdUxGlDKVY4F4Ss76fpnGQlAxIqo0ceHzypqVzx784O3Qxaz2_dCuF1lI_fDps_nsvcqq9qZsb7M6Gvvl4zk5CWbV-4tDHZOPp8f6_jkv3-Yv97Mytxz5kAeJliIWDqQVTWMbVQBz4PgUjQOLYBrjGA8SEqYUNYybaeCuaaQI0lkYk-v93k3sfrbpL73stnGdTmquBAMoBGKi6J6ysev76IPexPbbxF_NqN750cmP3vnRBz8pcrWPtN77fzibKpQc_gAtN18v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851334599</pqid></control><display><type>article</type><title>Large-Scale Detector Testing for the GAPS Si(Li) Tracker</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Mengjiao ; Stoessl, Achim ; Roach, Brandon ; Gerrity, Cory ; Bouche, Ian ; Bridges, Gabriel ; Von Doetinchem, Philip ; Hailey, Charles J. ; Kraych, Derik ; Katt, Anika ; Law, Michael ; Lowell, Alexander ; Martinez, Evan ; Perez, Kerstin ; Reed, Maggie ; Rodriguez, Chelsea ; Saffold, Nathan ; Stringfield, Ceaser ; Weiner, Hershel ; Yee, Kelsey</creator><creatorcontrib>Xiao, Mengjiao ; Stoessl, Achim ; Roach, Brandon ; Gerrity, Cory ; Bouche, Ian ; Bridges, Gabriel ; Von Doetinchem, Philip ; Hailey, Charles J. ; Kraych, Derik ; Katt, Anika ; Law, Michael ; Lowell, Alexander ; Martinez, Evan ; Perez, Kerstin ; Reed, Maggie ; Rodriguez, Chelsea ; Saffold, Nathan ; Stringfield, Ceaser ; Weiner, Hershel ; Yee, Kelsey</creatorcontrib><description>Lithium-drifted silicon [Si(Li)] has been used for decades as an ionizing radiation detector in nuclear, particle, and astrophysics experiments, though such detectors have frequently been limited to small sizes (few cm 2 ) and cryogenic operating temperatures. The 10-cm-diameter Si(Li) detectors developed for the General Antiparticle Spectrometer (GAPS) balloon-borne dark matter experiment are novel particularly for their requirements of low cost, large sensitive area (~10 m 2 for the full 1440-detector array), high temperatures (near -40 °C), and energy resolution below 4 keV FWHM for 20-100-keV x-rays. Previous works have discussed the manufacturing, passivation, and small-scale testing of prototype GAPS Si(Li) detectors. Here we show for the first time the results from detailed characterization of over 1100 flight detectors, illustrating the consistent intrinsic low-noise performance of a large sample of GAPS detectors. This work demonstrates the feasibility of large-area and low-cost Si(Li) detector arrays for next-generation astrophysics and nuclear physics applications.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2023.3291235</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Area ; Arrays ; Astrophysics ; Cryoforming ; Cryogenic temperature ; Dark matter ; Detectors ; Energy resolution ; Flanges ; High temperature ; Ionizing radiation ; Lithium ; Low cost ; Nuclear physics ; Operating temperature ; Preamplifiers ; Radiation detectors ; Silicon ; Strips ; Testing</subject><ispartof>IEEE transactions on nuclear science, 2023-08, Vol.70 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f79c0994d37c5bbcb8431d3d269ad3c93abad12f73c09880a12a6f2dbb75f7dc3</citedby><cites>FETCH-LOGICAL-c292t-f79c0994d37c5bbcb8431d3d269ad3c93abad12f73c09880a12a6f2dbb75f7dc3</cites><orcidid>0000-0003-3841-6290 ; 0000-0003-3763-0033 ; 0000-0002-6404-4737 ; 0000-0002-6397-617X ; 0009-0009-8275-6111 ; 0000-0003-2054-418X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10168972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10168972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Mengjiao</creatorcontrib><creatorcontrib>Stoessl, Achim</creatorcontrib><creatorcontrib>Roach, Brandon</creatorcontrib><creatorcontrib>Gerrity, Cory</creatorcontrib><creatorcontrib>Bouche, Ian</creatorcontrib><creatorcontrib>Bridges, Gabriel</creatorcontrib><creatorcontrib>Von Doetinchem, Philip</creatorcontrib><creatorcontrib>Hailey, Charles J.</creatorcontrib><creatorcontrib>Kraych, Derik</creatorcontrib><creatorcontrib>Katt, Anika</creatorcontrib><creatorcontrib>Law, Michael</creatorcontrib><creatorcontrib>Lowell, Alexander</creatorcontrib><creatorcontrib>Martinez, Evan</creatorcontrib><creatorcontrib>Perez, Kerstin</creatorcontrib><creatorcontrib>Reed, Maggie</creatorcontrib><creatorcontrib>Rodriguez, Chelsea</creatorcontrib><creatorcontrib>Saffold, Nathan</creatorcontrib><creatorcontrib>Stringfield, Ceaser</creatorcontrib><creatorcontrib>Weiner, Hershel</creatorcontrib><creatorcontrib>Yee, Kelsey</creatorcontrib><title>Large-Scale Detector Testing for the GAPS Si(Li) Tracker</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Lithium-drifted silicon [Si(Li)] has been used for decades as an ionizing radiation detector in nuclear, particle, and astrophysics experiments, though such detectors have frequently been limited to small sizes (few cm 2 ) and cryogenic operating temperatures. The 10-cm-diameter Si(Li) detectors developed for the General Antiparticle Spectrometer (GAPS) balloon-borne dark matter experiment are novel particularly for their requirements of low cost, large sensitive area (~10 m 2 for the full 1440-detector array), high temperatures (near -40 °C), and energy resolution below 4 keV FWHM for 20-100-keV x-rays. Previous works have discussed the manufacturing, passivation, and small-scale testing of prototype GAPS Si(Li) detectors. Here we show for the first time the results from detailed characterization of over 1100 flight detectors, illustrating the consistent intrinsic low-noise performance of a large sample of GAPS detectors. This work demonstrates the feasibility of large-area and low-cost Si(Li) detector arrays for next-generation astrophysics and nuclear physics applications.</description><subject>Area</subject><subject>Arrays</subject><subject>Astrophysics</subject><subject>Cryoforming</subject><subject>Cryogenic temperature</subject><subject>Dark matter</subject><subject>Detectors</subject><subject>Energy resolution</subject><subject>Flanges</subject><subject>High temperature</subject><subject>Ionizing radiation</subject><subject>Lithium</subject><subject>Low cost</subject><subject>Nuclear physics</subject><subject>Operating temperature</subject><subject>Preamplifiers</subject><subject>Radiation detectors</subject><subject>Silicon</subject><subject>Strips</subject><subject>Testing</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYoEhxfbFtW-s-ChIESAlzJbjj5JSmuKkA_8eV-3AdHfS896dHkIuGZ0wRvGufq0mnHKYAEfGQRyRERNC5UxIdUxGlDKVY4F4Ss76fpnGQlAxIqo0ceHzypqVzx784O3Qxaz2_dCuF1lI_fDps_nsvcqq9qZsb7M6Gvvl4zk5CWbV-4tDHZOPp8f6_jkv3-Yv97Mytxz5kAeJliIWDqQVTWMbVQBz4PgUjQOLYBrjGA8SEqYUNYybaeCuaaQI0lkYk-v93k3sfrbpL73stnGdTmquBAMoBGKi6J6ysev76IPexPbbxF_NqN750cmP3vnRBz8pcrWPtN77fzibKpQc_gAtN18v</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Xiao, Mengjiao</creator><creator>Stoessl, Achim</creator><creator>Roach, Brandon</creator><creator>Gerrity, Cory</creator><creator>Bouche, Ian</creator><creator>Bridges, Gabriel</creator><creator>Von Doetinchem, Philip</creator><creator>Hailey, Charles J.</creator><creator>Kraych, Derik</creator><creator>Katt, Anika</creator><creator>Law, Michael</creator><creator>Lowell, Alexander</creator><creator>Martinez, Evan</creator><creator>Perez, Kerstin</creator><creator>Reed, Maggie</creator><creator>Rodriguez, Chelsea</creator><creator>Saffold, Nathan</creator><creator>Stringfield, Ceaser</creator><creator>Weiner, Hershel</creator><creator>Yee, Kelsey</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3841-6290</orcidid><orcidid>https://orcid.org/0000-0003-3763-0033</orcidid><orcidid>https://orcid.org/0000-0002-6404-4737</orcidid><orcidid>https://orcid.org/0000-0002-6397-617X</orcidid><orcidid>https://orcid.org/0009-0009-8275-6111</orcidid><orcidid>https://orcid.org/0000-0003-2054-418X</orcidid></search><sort><creationdate>20230801</creationdate><title>Large-Scale Detector Testing for the GAPS Si(Li) Tracker</title><author>Xiao, Mengjiao ; Stoessl, Achim ; Roach, Brandon ; Gerrity, Cory ; Bouche, Ian ; Bridges, Gabriel ; Von Doetinchem, Philip ; Hailey, Charles J. ; Kraych, Derik ; Katt, Anika ; Law, Michael ; Lowell, Alexander ; Martinez, Evan ; Perez, Kerstin ; Reed, Maggie ; Rodriguez, Chelsea ; Saffold, Nathan ; Stringfield, Ceaser ; Weiner, Hershel ; Yee, Kelsey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f79c0994d37c5bbcb8431d3d269ad3c93abad12f73c09880a12a6f2dbb75f7dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Area</topic><topic>Arrays</topic><topic>Astrophysics</topic><topic>Cryoforming</topic><topic>Cryogenic temperature</topic><topic>Dark matter</topic><topic>Detectors</topic><topic>Energy resolution</topic><topic>Flanges</topic><topic>High temperature</topic><topic>Ionizing radiation</topic><topic>Lithium</topic><topic>Low cost</topic><topic>Nuclear physics</topic><topic>Operating temperature</topic><topic>Preamplifiers</topic><topic>Radiation detectors</topic><topic>Silicon</topic><topic>Strips</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Mengjiao</creatorcontrib><creatorcontrib>Stoessl, Achim</creatorcontrib><creatorcontrib>Roach, Brandon</creatorcontrib><creatorcontrib>Gerrity, Cory</creatorcontrib><creatorcontrib>Bouche, Ian</creatorcontrib><creatorcontrib>Bridges, Gabriel</creatorcontrib><creatorcontrib>Von Doetinchem, Philip</creatorcontrib><creatorcontrib>Hailey, Charles J.</creatorcontrib><creatorcontrib>Kraych, Derik</creatorcontrib><creatorcontrib>Katt, Anika</creatorcontrib><creatorcontrib>Law, Michael</creatorcontrib><creatorcontrib>Lowell, Alexander</creatorcontrib><creatorcontrib>Martinez, Evan</creatorcontrib><creatorcontrib>Perez, Kerstin</creatorcontrib><creatorcontrib>Reed, Maggie</creatorcontrib><creatorcontrib>Rodriguez, Chelsea</creatorcontrib><creatorcontrib>Saffold, Nathan</creatorcontrib><creatorcontrib>Stringfield, Ceaser</creatorcontrib><creatorcontrib>Weiner, Hershel</creatorcontrib><creatorcontrib>Yee, Kelsey</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Mengjiao</au><au>Stoessl, Achim</au><au>Roach, Brandon</au><au>Gerrity, Cory</au><au>Bouche, Ian</au><au>Bridges, Gabriel</au><au>Von Doetinchem, Philip</au><au>Hailey, Charles J.</au><au>Kraych, Derik</au><au>Katt, Anika</au><au>Law, Michael</au><au>Lowell, Alexander</au><au>Martinez, Evan</au><au>Perez, Kerstin</au><au>Reed, Maggie</au><au>Rodriguez, Chelsea</au><au>Saffold, Nathan</au><au>Stringfield, Ceaser</au><au>Weiner, Hershel</au><au>Yee, Kelsey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Detector Testing for the GAPS Si(Li) Tracker</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>70</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Lithium-drifted silicon [Si(Li)] has been used for decades as an ionizing radiation detector in nuclear, particle, and astrophysics experiments, though such detectors have frequently been limited to small sizes (few cm 2 ) and cryogenic operating temperatures. The 10-cm-diameter Si(Li) detectors developed for the General Antiparticle Spectrometer (GAPS) balloon-borne dark matter experiment are novel particularly for their requirements of low cost, large sensitive area (~10 m 2 for the full 1440-detector array), high temperatures (near -40 °C), and energy resolution below 4 keV FWHM for 20-100-keV x-rays. Previous works have discussed the manufacturing, passivation, and small-scale testing of prototype GAPS Si(Li) detectors. Here we show for the first time the results from detailed characterization of over 1100 flight detectors, illustrating the consistent intrinsic low-noise performance of a large sample of GAPS detectors. This work demonstrates the feasibility of large-area and low-cost Si(Li) detector arrays for next-generation astrophysics and nuclear physics applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2023.3291235</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3841-6290</orcidid><orcidid>https://orcid.org/0000-0003-3763-0033</orcidid><orcidid>https://orcid.org/0000-0002-6404-4737</orcidid><orcidid>https://orcid.org/0000-0002-6397-617X</orcidid><orcidid>https://orcid.org/0009-0009-8275-6111</orcidid><orcidid>https://orcid.org/0000-0003-2054-418X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2023-08, Vol.70 (8), p.1-1 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_2851334599 |
source | IEEE Electronic Library (IEL) |
subjects | Area Arrays Astrophysics Cryoforming Cryogenic temperature Dark matter Detectors Energy resolution Flanges High temperature Ionizing radiation Lithium Low cost Nuclear physics Operating temperature Preamplifiers Radiation detectors Silicon Strips Testing |
title | Large-Scale Detector Testing for the GAPS Si(Li) Tracker |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Detector%20Testing%20for%20the%20GAPS%20Si(Li)%20Tracker&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Xiao,%20Mengjiao&rft.date=2023-08-01&rft.volume=70&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2023.3291235&rft_dat=%3Cproquest_RIE%3E2851334599%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851334599&rft_id=info:pmid/&rft_ieee_id=10168972&rfr_iscdi=true |