The moduli space of cactus flower curves and the virtual cactus group

The space \( \ft_n = \C^n/\C \) of \(n\) points on the line modulo translation has a natural compactification \( \overline \ft_n \) as a matroid Schubert variety. In this space, pairwise distances between points can be infinite; it is natural to imagine points at infinite distance from each other as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Ilin, Aleksei, Kamnitzer, Joel, Li, Yu, Przytycki, Piotr, Rybnikov, Leonid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ilin, Aleksei
Kamnitzer, Joel
Li, Yu
Przytycki, Piotr
Rybnikov, Leonid
description The space \( \ft_n = \C^n/\C \) of \(n\) points on the line modulo translation has a natural compactification \( \overline \ft_n \) as a matroid Schubert variety. In this space, pairwise distances between points can be infinite; it is natural to imagine points at infinite distance from each other as living on different projective lines. We call such a configuration of points a ``flower curve'', since we picture the projective lines joined into a flower. Within \( \ft_n \), we have the space \( F_n = \C^n \setminus \Delta / \C \) of \( n\) distinct points. We introduce a natural compatification \( \overline F_n \) along with a map \( \overline F_n \rightarrow \overline \ft_n \), whose fibres are products of genus 0 Deligne-Mumford spaces. We show that both \(\overline \ft_n\) and \(\overline F_n\), are special fibers of \(1\)-parameter families whose generic fibers are, respectively, Losev-Manin and Deligne-Mumford moduli spaces of stable genus \(0\) curves with \(n+2\) marked points. We find combinatorial models for the real loci \( \overline \ft_n(\BR) \) and \( \overline F_n(\BR) \). Using these models, we prove that these spaces are aspherical and that their equivariant fundamental groups are the virtual symmetric group and the virtual cactus groups, respectively. The degeneration of a twisted real form of the Deligne-Mumford space to \(\overline F_n(\mathbb{R})\) gives rise to a natural homomorphism from the affine cactus group to the virtual cactus group.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2850926248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850926248</sourcerecordid><originalsourceid>FETCH-proquest_journals_28509262483</originalsourceid><addsrcrecordid>eNqNyrEOgjAQgOHGxESivMMlziT1CoizwfgA7KSpRSGVYq-Hry-D7k7_8H8rkaBSh6zKETciJRqklFgesShUIurmYeHpb-x6oEkbC74Do01kgs75tw1gOMyWQI83iAue-xBZux-6B8_TTqw77cim327F_lI352s2Bf9iS7EdPIdxWS1WhTxhiXml_lMfbJo65w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850926248</pqid></control><display><type>article</type><title>The moduli space of cactus flower curves and the virtual cactus group</title><source>Free E- Journals</source><creator>Ilin, Aleksei ; Kamnitzer, Joel ; Li, Yu ; Przytycki, Piotr ; Rybnikov, Leonid</creator><creatorcontrib>Ilin, Aleksei ; Kamnitzer, Joel ; Li, Yu ; Przytycki, Piotr ; Rybnikov, Leonid</creatorcontrib><description>The space \( \ft_n = \C^n/\C \) of \(n\) points on the line modulo translation has a natural compactification \( \overline \ft_n \) as a matroid Schubert variety. In this space, pairwise distances between points can be infinite; it is natural to imagine points at infinite distance from each other as living on different projective lines. We call such a configuration of points a ``flower curve'', since we picture the projective lines joined into a flower. Within \( \ft_n \), we have the space \( F_n = \C^n \setminus \Delta / \C \) of \( n\) distinct points. We introduce a natural compatification \( \overline F_n \) along with a map \( \overline F_n \rightarrow \overline \ft_n \), whose fibres are products of genus 0 Deligne-Mumford spaces. We show that both \(\overline \ft_n\) and \(\overline F_n\), are special fibers of \(1\)-parameter families whose generic fibers are, respectively, Losev-Manin and Deligne-Mumford moduli spaces of stable genus \(0\) curves with \(n+2\) marked points. We find combinatorial models for the real loci \( \overline \ft_n(\BR) \) and \( \overline F_n(\BR) \). Using these models, we prove that these spaces are aspherical and that their equivariant fundamental groups are the virtual symmetric group and the virtual cactus groups, respectively. The degeneration of a twisted real form of the Deligne-Mumford space to \(\overline F_n(\mathbb{R})\) gives rise to a natural homomorphism from the affine cactus group to the virtual cactus group.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Fibers ; Homomorphisms ; Loci</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ilin, Aleksei</creatorcontrib><creatorcontrib>Kamnitzer, Joel</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Przytycki, Piotr</creatorcontrib><creatorcontrib>Rybnikov, Leonid</creatorcontrib><title>The moduli space of cactus flower curves and the virtual cactus group</title><title>arXiv.org</title><description>The space \( \ft_n = \C^n/\C \) of \(n\) points on the line modulo translation has a natural compactification \( \overline \ft_n \) as a matroid Schubert variety. In this space, pairwise distances between points can be infinite; it is natural to imagine points at infinite distance from each other as living on different projective lines. We call such a configuration of points a ``flower curve'', since we picture the projective lines joined into a flower. Within \( \ft_n \), we have the space \( F_n = \C^n \setminus \Delta / \C \) of \( n\) distinct points. We introduce a natural compatification \( \overline F_n \) along with a map \( \overline F_n \rightarrow \overline \ft_n \), whose fibres are products of genus 0 Deligne-Mumford spaces. We show that both \(\overline \ft_n\) and \(\overline F_n\), are special fibers of \(1\)-parameter families whose generic fibers are, respectively, Losev-Manin and Deligne-Mumford moduli spaces of stable genus \(0\) curves with \(n+2\) marked points. We find combinatorial models for the real loci \( \overline \ft_n(\BR) \) and \( \overline F_n(\BR) \). Using these models, we prove that these spaces are aspherical and that their equivariant fundamental groups are the virtual symmetric group and the virtual cactus groups, respectively. The degeneration of a twisted real form of the Deligne-Mumford space to \(\overline F_n(\mathbb{R})\) gives rise to a natural homomorphism from the affine cactus group to the virtual cactus group.</description><subject>Combinatorial analysis</subject><subject>Fibers</subject><subject>Homomorphisms</subject><subject>Loci</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAQgOHGxESivMMlziT1CoizwfgA7KSpRSGVYq-Hry-D7k7_8H8rkaBSh6zKETciJRqklFgesShUIurmYeHpb-x6oEkbC74Do01kgs75tw1gOMyWQI83iAue-xBZux-6B8_TTqw77cim327F_lI352s2Bf9iS7EdPIdxWS1WhTxhiXml_lMfbJo65w</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Ilin, Aleksei</creator><creator>Kamnitzer, Joel</creator><creator>Li, Yu</creator><creator>Przytycki, Piotr</creator><creator>Rybnikov, Leonid</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240517</creationdate><title>The moduli space of cactus flower curves and the virtual cactus group</title><author>Ilin, Aleksei ; Kamnitzer, Joel ; Li, Yu ; Przytycki, Piotr ; Rybnikov, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28509262483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>Fibers</topic><topic>Homomorphisms</topic><topic>Loci</topic><toplevel>online_resources</toplevel><creatorcontrib>Ilin, Aleksei</creatorcontrib><creatorcontrib>Kamnitzer, Joel</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Przytycki, Piotr</creatorcontrib><creatorcontrib>Rybnikov, Leonid</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilin, Aleksei</au><au>Kamnitzer, Joel</au><au>Li, Yu</au><au>Przytycki, Piotr</au><au>Rybnikov, Leonid</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The moduli space of cactus flower curves and the virtual cactus group</atitle><jtitle>arXiv.org</jtitle><date>2024-05-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The space \( \ft_n = \C^n/\C \) of \(n\) points on the line modulo translation has a natural compactification \( \overline \ft_n \) as a matroid Schubert variety. In this space, pairwise distances between points can be infinite; it is natural to imagine points at infinite distance from each other as living on different projective lines. We call such a configuration of points a ``flower curve'', since we picture the projective lines joined into a flower. Within \( \ft_n \), we have the space \( F_n = \C^n \setminus \Delta / \C \) of \( n\) distinct points. We introduce a natural compatification \( \overline F_n \) along with a map \( \overline F_n \rightarrow \overline \ft_n \), whose fibres are products of genus 0 Deligne-Mumford spaces. We show that both \(\overline \ft_n\) and \(\overline F_n\), are special fibers of \(1\)-parameter families whose generic fibers are, respectively, Losev-Manin and Deligne-Mumford moduli spaces of stable genus \(0\) curves with \(n+2\) marked points. We find combinatorial models for the real loci \( \overline \ft_n(\BR) \) and \( \overline F_n(\BR) \). Using these models, we prove that these spaces are aspherical and that their equivariant fundamental groups are the virtual symmetric group and the virtual cactus groups, respectively. The degeneration of a twisted real form of the Deligne-Mumford space to \(\overline F_n(\mathbb{R})\) gives rise to a natural homomorphism from the affine cactus group to the virtual cactus group.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2850926248
source Free E- Journals
subjects Combinatorial analysis
Fibers
Homomorphisms
Loci
title The moduli space of cactus flower curves and the virtual cactus group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20moduli%20space%20of%20cactus%20flower%20curves%20and%20the%20virtual%20cactus%20group&rft.jtitle=arXiv.org&rft.au=Ilin,%20Aleksei&rft.date=2024-05-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2850926248%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850926248&rft_id=info:pmid/&rfr_iscdi=true