Combining feature aggregation and geometric similarity for re-identification of patterned animals

Image-based re-identification of animal individuals allows gathering of information such as migration patterns of the animals over time. This, together with large image volumes collected using camera traps and crowdsourcing, opens novel possibilities to study animal populations. For many species, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Immonen, Veikka, Nepovinnykh, Ekaterina, Eerola, Tuomas, Stewart, Charles V, Kälviäinen, Heikki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Immonen, Veikka
Nepovinnykh, Ekaterina
Eerola, Tuomas
Stewart, Charles V
Kälviäinen, Heikki
description Image-based re-identification of animal individuals allows gathering of information such as migration patterns of the animals over time. This, together with large image volumes collected using camera traps and crowdsourcing, opens novel possibilities to study animal populations. For many species, the re-identification can be done by analyzing the permanent fur, feather, or skin patterns that are unique to each individual. In this paper, we address the re-identification by combining two types of pattern similarity metrics: 1) pattern appearance similarity obtained by pattern feature aggregation and 2) geometric pattern similarity obtained by analyzing the geometric consistency of pattern similarities. The proposed combination allows to efficiently utilize both the local and global pattern features, providing a general re-identification approach that can be applied to a wide variety of different pattern types. In the experimental part of the work, we demonstrate that the method achieves promising re-identification accuracies for Saimaa ringed seals and whale sharks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2850916923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850916923</sourcerecordid><originalsourceid>FETCH-proquest_journals_28509169233</originalsourceid><addsrcrecordid>eNqNjkEKwjAQRYMgWLR3CLguxNTWdl0UD-C-xHYSpjRJnaQLb29AD-DqLf578Dcsk2V5KpqzlDuWhzAJIWR9kVVVZkx13j7RoTNcg4orAVfGEBgV0Tuu3MgNeAuRcOABLc6KML659sQJChzBRdQ4fHWv-aJiBHIwphatmsOBbXUC5D_u2fF2fXT3YiH_WiHEfvIruTT1sqlEe6rb9Pc_6wPMjEZZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850916923</pqid></control><display><type>article</type><title>Combining feature aggregation and geometric similarity for re-identification of patterned animals</title><source>Free E- Journals</source><creator>Immonen, Veikka ; Nepovinnykh, Ekaterina ; Eerola, Tuomas ; Stewart, Charles V ; Kälviäinen, Heikki</creator><creatorcontrib>Immonen, Veikka ; Nepovinnykh, Ekaterina ; Eerola, Tuomas ; Stewart, Charles V ; Kälviäinen, Heikki</creatorcontrib><description>Image-based re-identification of animal individuals allows gathering of information such as migration patterns of the animals over time. This, together with large image volumes collected using camera traps and crowdsourcing, opens novel possibilities to study animal populations. For many species, the re-identification can be done by analyzing the permanent fur, feather, or skin patterns that are unique to each individual. In this paper, we address the re-identification by combining two types of pattern similarity metrics: 1) pattern appearance similarity obtained by pattern feature aggregation and 2) geometric pattern similarity obtained by analyzing the geometric consistency of pattern similarities. The proposed combination allows to efficiently utilize both the local and global pattern features, providing a general re-identification approach that can be applied to a wide variety of different pattern types. In the experimental part of the work, we demonstrate that the method achieves promising re-identification accuracies for Saimaa ringed seals and whale sharks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Animals ; Identification ; Pattern analysis ; Similarity</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Immonen, Veikka</creatorcontrib><creatorcontrib>Nepovinnykh, Ekaterina</creatorcontrib><creatorcontrib>Eerola, Tuomas</creatorcontrib><creatorcontrib>Stewart, Charles V</creatorcontrib><creatorcontrib>Kälviäinen, Heikki</creatorcontrib><title>Combining feature aggregation and geometric similarity for re-identification of patterned animals</title><title>arXiv.org</title><description>Image-based re-identification of animal individuals allows gathering of information such as migration patterns of the animals over time. This, together with large image volumes collected using camera traps and crowdsourcing, opens novel possibilities to study animal populations. For many species, the re-identification can be done by analyzing the permanent fur, feather, or skin patterns that are unique to each individual. In this paper, we address the re-identification by combining two types of pattern similarity metrics: 1) pattern appearance similarity obtained by pattern feature aggregation and 2) geometric pattern similarity obtained by analyzing the geometric consistency of pattern similarities. The proposed combination allows to efficiently utilize both the local and global pattern features, providing a general re-identification approach that can be applied to a wide variety of different pattern types. In the experimental part of the work, we demonstrate that the method achieves promising re-identification accuracies for Saimaa ringed seals and whale sharks.</description><subject>Animals</subject><subject>Identification</subject><subject>Pattern analysis</subject><subject>Similarity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjkEKwjAQRYMgWLR3CLguxNTWdl0UD-C-xHYSpjRJnaQLb29AD-DqLf578Dcsk2V5KpqzlDuWhzAJIWR9kVVVZkx13j7RoTNcg4orAVfGEBgV0Tuu3MgNeAuRcOABLc6KML659sQJChzBRdQ4fHWv-aJiBHIwphatmsOBbXUC5D_u2fF2fXT3YiH_WiHEfvIruTT1sqlEe6rb9Pc_6wPMjEZZ</recordid><startdate>20230811</startdate><enddate>20230811</enddate><creator>Immonen, Veikka</creator><creator>Nepovinnykh, Ekaterina</creator><creator>Eerola, Tuomas</creator><creator>Stewart, Charles V</creator><creator>Kälviäinen, Heikki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230811</creationdate><title>Combining feature aggregation and geometric similarity for re-identification of patterned animals</title><author>Immonen, Veikka ; Nepovinnykh, Ekaterina ; Eerola, Tuomas ; Stewart, Charles V ; Kälviäinen, Heikki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28509169233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Identification</topic><topic>Pattern analysis</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Immonen, Veikka</creatorcontrib><creatorcontrib>Nepovinnykh, Ekaterina</creatorcontrib><creatorcontrib>Eerola, Tuomas</creatorcontrib><creatorcontrib>Stewart, Charles V</creatorcontrib><creatorcontrib>Kälviäinen, Heikki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Immonen, Veikka</au><au>Nepovinnykh, Ekaterina</au><au>Eerola, Tuomas</au><au>Stewart, Charles V</au><au>Kälviäinen, Heikki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Combining feature aggregation and geometric similarity for re-identification of patterned animals</atitle><jtitle>arXiv.org</jtitle><date>2023-08-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Image-based re-identification of animal individuals allows gathering of information such as migration patterns of the animals over time. This, together with large image volumes collected using camera traps and crowdsourcing, opens novel possibilities to study animal populations. For many species, the re-identification can be done by analyzing the permanent fur, feather, or skin patterns that are unique to each individual. In this paper, we address the re-identification by combining two types of pattern similarity metrics: 1) pattern appearance similarity obtained by pattern feature aggregation and 2) geometric pattern similarity obtained by analyzing the geometric consistency of pattern similarities. The proposed combination allows to efficiently utilize both the local and global pattern features, providing a general re-identification approach that can be applied to a wide variety of different pattern types. In the experimental part of the work, we demonstrate that the method achieves promising re-identification accuracies for Saimaa ringed seals and whale sharks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2850916923
source Free E- Journals
subjects Animals
Identification
Pattern analysis
Similarity
title Combining feature aggregation and geometric similarity for re-identification of patterned animals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Combining%20feature%20aggregation%20and%20geometric%20similarity%20for%20re-identification%20of%20patterned%20animals&rft.jtitle=arXiv.org&rft.au=Immonen,%20Veikka&rft.date=2023-08-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2850916923%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850916923&rft_id=info:pmid/&rfr_iscdi=true