An Integrated Visual Analytics System for Studying Clinical Carotid Artery Plaques
Carotid artery plaques can cause arterial vascular diseases such as stroke and myocardial infarction, posing a severe threat to human life. However, the current clinical examination mainly relies on a direct assessment by physicians of patients' clinical indicators and medical images, lacking a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xu, Chaoqing Zheng, Zhentao Fu, Yiting Chang, Baofeng Chen, Legao Wu, Minghui Song, Mingli Jiang, Jinsong |
description | Carotid artery plaques can cause arterial vascular diseases such as stroke and myocardial infarction, posing a severe threat to human life. However, the current clinical examination mainly relies on a direct assessment by physicians of patients' clinical indicators and medical images, lacking an integrated visualization tool for analyzing the influencing factors and composition of carotid artery plaques. We have designed an intelligent carotid artery plaque visual analysis system for vascular surgery experts to comprehensively analyze the clinical physiological and imaging indicators of carotid artery diseases. The system mainly includes two functions: First, it displays the correlation between carotid artery plaque and various factors through a series of information visualization methods and integrates the analysis of patient physiological indicator data. Second, it enhances the interface guidance analysis of the inherent correlation between the components of carotid artery plaque through machine learning and displays the spatial distribution of the plaque on medical images. Additionally, we conducted two case studies on carotid artery plaques using real data obtained from a hospital, and the results indicate that our designed carotid analysis system can effectively provide clinical diagnosis and treatment guidance for vascular surgeons. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2850916755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850916755</sourcerecordid><originalsourceid>FETCH-proquest_journals_28509167553</originalsourceid><addsrcrecordid>eNqNjr0KwjAURoMgWLTvcMG5EFP741iKoptYcS2hTUtKTDQ3GfL2VvABnM7wHfjOgkQsTXdJuWdsRWLEiVLK8oJlWRqRW6Xhop0YLXeih4dEzxVUmqvgZIfQBHTiCYOx0DjfB6lHqJXUspu1mlvjZA-VdcIGuCr-9gI3ZDlwhSL-cU22p-O9Picva767ayfj7fyALSszetjlxZzyn_UB110_ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850916755</pqid></control><display><type>article</type><title>An Integrated Visual Analytics System for Studying Clinical Carotid Artery Plaques</title><source>Free E- Journals</source><creator>Xu, Chaoqing ; Zheng, Zhentao ; Fu, Yiting ; Chang, Baofeng ; Chen, Legao ; Wu, Minghui ; Song, Mingli ; Jiang, Jinsong</creator><creatorcontrib>Xu, Chaoqing ; Zheng, Zhentao ; Fu, Yiting ; Chang, Baofeng ; Chen, Legao ; Wu, Minghui ; Song, Mingli ; Jiang, Jinsong</creatorcontrib><description>Carotid artery plaques can cause arterial vascular diseases such as stroke and myocardial infarction, posing a severe threat to human life. However, the current clinical examination mainly relies on a direct assessment by physicians of patients' clinical indicators and medical images, lacking an integrated visualization tool for analyzing the influencing factors and composition of carotid artery plaques. We have designed an intelligent carotid artery plaque visual analysis system for vascular surgery experts to comprehensively analyze the clinical physiological and imaging indicators of carotid artery diseases. The system mainly includes two functions: First, it displays the correlation between carotid artery plaque and various factors through a series of information visualization methods and integrates the analysis of patient physiological indicator data. Second, it enhances the interface guidance analysis of the inherent correlation between the components of carotid artery plaque through machine learning and displays the spatial distribution of the plaque on medical images. Additionally, we conducted two case studies on carotid artery plaques using real data obtained from a hospital, and the results indicate that our designed carotid analysis system can effectively provide clinical diagnosis and treatment guidance for vascular surgeons.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Carotid arteries ; Displays ; Goats ; Indicators ; Machine learning ; Mathematical analysis ; Medical imaging ; Physiology ; Scientific visualization ; Spatial distribution ; Visualization</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xu, Chaoqing</creatorcontrib><creatorcontrib>Zheng, Zhentao</creatorcontrib><creatorcontrib>Fu, Yiting</creatorcontrib><creatorcontrib>Chang, Baofeng</creatorcontrib><creatorcontrib>Chen, Legao</creatorcontrib><creatorcontrib>Wu, Minghui</creatorcontrib><creatorcontrib>Song, Mingli</creatorcontrib><creatorcontrib>Jiang, Jinsong</creatorcontrib><title>An Integrated Visual Analytics System for Studying Clinical Carotid Artery Plaques</title><title>arXiv.org</title><description>Carotid artery plaques can cause arterial vascular diseases such as stroke and myocardial infarction, posing a severe threat to human life. However, the current clinical examination mainly relies on a direct assessment by physicians of patients' clinical indicators and medical images, lacking an integrated visualization tool for analyzing the influencing factors and composition of carotid artery plaques. We have designed an intelligent carotid artery plaque visual analysis system for vascular surgery experts to comprehensively analyze the clinical physiological and imaging indicators of carotid artery diseases. The system mainly includes two functions: First, it displays the correlation between carotid artery plaque and various factors through a series of information visualization methods and integrates the analysis of patient physiological indicator data. Second, it enhances the interface guidance analysis of the inherent correlation between the components of carotid artery plaque through machine learning and displays the spatial distribution of the plaque on medical images. Additionally, we conducted two case studies on carotid artery plaques using real data obtained from a hospital, and the results indicate that our designed carotid analysis system can effectively provide clinical diagnosis and treatment guidance for vascular surgeons.</description><subject>Carotid arteries</subject><subject>Displays</subject><subject>Goats</subject><subject>Indicators</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Physiology</subject><subject>Scientific visualization</subject><subject>Spatial distribution</subject><subject>Visualization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjr0KwjAURoMgWLTvcMG5EFP741iKoptYcS2hTUtKTDQ3GfL2VvABnM7wHfjOgkQsTXdJuWdsRWLEiVLK8oJlWRqRW6Xhop0YLXeih4dEzxVUmqvgZIfQBHTiCYOx0DjfB6lHqJXUspu1mlvjZA-VdcIGuCr-9gI3ZDlwhSL-cU22p-O9Picva767ayfj7fyALSszetjlxZzyn_UB110_ow</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Xu, Chaoqing</creator><creator>Zheng, Zhentao</creator><creator>Fu, Yiting</creator><creator>Chang, Baofeng</creator><creator>Chen, Legao</creator><creator>Wu, Minghui</creator><creator>Song, Mingli</creator><creator>Jiang, Jinsong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230809</creationdate><title>An Integrated Visual Analytics System for Studying Clinical Carotid Artery Plaques</title><author>Xu, Chaoqing ; Zheng, Zhentao ; Fu, Yiting ; Chang, Baofeng ; Chen, Legao ; Wu, Minghui ; Song, Mingli ; Jiang, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28509167553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carotid arteries</topic><topic>Displays</topic><topic>Goats</topic><topic>Indicators</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Physiology</topic><topic>Scientific visualization</topic><topic>Spatial distribution</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chaoqing</creatorcontrib><creatorcontrib>Zheng, Zhentao</creatorcontrib><creatorcontrib>Fu, Yiting</creatorcontrib><creatorcontrib>Chang, Baofeng</creatorcontrib><creatorcontrib>Chen, Legao</creatorcontrib><creatorcontrib>Wu, Minghui</creatorcontrib><creatorcontrib>Song, Mingli</creatorcontrib><creatorcontrib>Jiang, Jinsong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chaoqing</au><au>Zheng, Zhentao</au><au>Fu, Yiting</au><au>Chang, Baofeng</au><au>Chen, Legao</au><au>Wu, Minghui</au><au>Song, Mingli</au><au>Jiang, Jinsong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Integrated Visual Analytics System for Studying Clinical Carotid Artery Plaques</atitle><jtitle>arXiv.org</jtitle><date>2023-08-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Carotid artery plaques can cause arterial vascular diseases such as stroke and myocardial infarction, posing a severe threat to human life. However, the current clinical examination mainly relies on a direct assessment by physicians of patients' clinical indicators and medical images, lacking an integrated visualization tool for analyzing the influencing factors and composition of carotid artery plaques. We have designed an intelligent carotid artery plaque visual analysis system for vascular surgery experts to comprehensively analyze the clinical physiological and imaging indicators of carotid artery diseases. The system mainly includes two functions: First, it displays the correlation between carotid artery plaque and various factors through a series of information visualization methods and integrates the analysis of patient physiological indicator data. Second, it enhances the interface guidance analysis of the inherent correlation between the components of carotid artery plaque through machine learning and displays the spatial distribution of the plaque on medical images. Additionally, we conducted two case studies on carotid artery plaques using real data obtained from a hospital, and the results indicate that our designed carotid analysis system can effectively provide clinical diagnosis and treatment guidance for vascular surgeons.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2850916755 |
source | Free E- Journals |
subjects | Carotid arteries Displays Goats Indicators Machine learning Mathematical analysis Medical imaging Physiology Scientific visualization Spatial distribution Visualization |
title | An Integrated Visual Analytics System for Studying Clinical Carotid Artery Plaques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Integrated%20Visual%20Analytics%20System%20for%20Studying%20Clinical%20Carotid%20Artery%20Plaques&rft.jtitle=arXiv.org&rft.au=Xu,%20Chaoqing&rft.date=2023-08-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2850916755%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850916755&rft_id=info:pmid/&rfr_iscdi=true |