Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations

In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2023-09, Vol.35 (3), p.1917-1945
Hauptverfasser: Carrião, Paulo Cesar, Lehrer, Raquel, Vicente, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1945
container_issue 3
container_start_page 1917
container_title Journal of dynamics and differential equations
container_volume 35
creator Carrião, Paulo Cesar
Lehrer, Raquel
Vicente, André
description In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one the solution exists globally. Additionally, we prove that the ground state solution of the elliptic problem associated to the original problem is unstable. The main goal of this paper is to present a new technique which allows us to consider nonlocal problems and to extend the classical result proved by Shatah (Trans Am Math Soc 290(2):701–710, 1985).
doi_str_mv 10.1007/s10884-023-10281-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2850683680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850683680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1cf89c8b965253004b80698dd86286be6caa6fcdd591db68d8d7aecaec39361b3</originalsourceid><addsrcrecordid>eNp9kMFKAzEYhIMoWKsv4CngOfon2c0mRy21ilVB7Tlkk6y0rJs22UW8-Q6-oU9itII34YeZw8z88CF0TOGUAlRniYKUBQHGCQUmKeE7aETLihHFGNvNHgogFVPFPjpIaQUASnI1QreLLvWmbj2exTB0Dj_2pvfYZHfRhle8WOMHn4a2x6HBd6FrgzUtvmn9svt8_5iF6EKHp5vB9MvQpUO015g2-aNfHaPF5fRpckXm97PryfmcWE5VT6htpLKyVqJkJQcoaglCSeekYFLUXlhjRGOdKxV1tZBOusp4m48rLmjNx-hku7uOYTP41OtVGGKXX2omSxCSCwk5xbYpG0NK0Td6HZcvJr5pCvobm95i0xmb_sGmeS7xbSnlcPfs49_0P60v7vxwnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850683680</pqid></control><display><type>article</type><title>Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations</title><source>SpringerNature Journals</source><creator>Carrião, Paulo Cesar ; Lehrer, Raquel ; Vicente, André</creator><creatorcontrib>Carrião, Paulo Cesar ; Lehrer, Raquel ; Vicente, André</creatorcontrib><description>In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one the solution exists globally. Additionally, we prove that the ground state solution of the elliptic problem associated to the original problem is unstable. The main goal of this paper is to present a new technique which allows us to consider nonlocal problems and to extend the classical result proved by Shatah (Trans Am Math Soc 290(2):701–710, 1985).</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-023-10281-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Ground state ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Journal of dynamics and differential equations, 2023-09, Vol.35 (3), p.1917-1945</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1cf89c8b965253004b80698dd86286be6caa6fcdd591db68d8d7aecaec39361b3</citedby><cites>FETCH-LOGICAL-c319t-1cf89c8b965253004b80698dd86286be6caa6fcdd591db68d8d7aecaec39361b3</cites><orcidid>0000-0001-6404-326X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-023-10281-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-023-10281-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Carrião, Paulo Cesar</creatorcontrib><creatorcontrib>Lehrer, Raquel</creatorcontrib><creatorcontrib>Vicente, André</creatorcontrib><title>Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one the solution exists globally. Additionally, we prove that the ground state solution of the elliptic problem associated to the original problem is unstable. The main goal of this paper is to present a new technique which allows us to consider nonlocal problems and to extend the classical result proved by Shatah (Trans Am Math Soc 290(2):701–710, 1985).</description><subject>Applications of Mathematics</subject><subject>Ground state</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEYhIMoWKsv4CngOfon2c0mRy21ilVB7Tlkk6y0rJs22UW8-Q6-oU9itII34YeZw8z88CF0TOGUAlRniYKUBQHGCQUmKeE7aETLihHFGNvNHgogFVPFPjpIaQUASnI1QreLLvWmbj2exTB0Dj_2pvfYZHfRhle8WOMHn4a2x6HBd6FrgzUtvmn9svt8_5iF6EKHp5vB9MvQpUO015g2-aNfHaPF5fRpckXm97PryfmcWE5VT6htpLKyVqJkJQcoaglCSeekYFLUXlhjRGOdKxV1tZBOusp4m48rLmjNx-hku7uOYTP41OtVGGKXX2omSxCSCwk5xbYpG0NK0Td6HZcvJr5pCvobm95i0xmb_sGmeS7xbSnlcPfs49_0P60v7vxwnw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Carrião, Paulo Cesar</creator><creator>Lehrer, Raquel</creator><creator>Vicente, André</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6404-326X</orcidid></search><sort><creationdate>20230901</creationdate><title>Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations</title><author>Carrião, Paulo Cesar ; Lehrer, Raquel ; Vicente, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1cf89c8b965253004b80698dd86286be6caa6fcdd591db68d8d7aecaec39361b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Ground state</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrião, Paulo Cesar</creatorcontrib><creatorcontrib>Lehrer, Raquel</creatorcontrib><creatorcontrib>Vicente, André</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrião, Paulo Cesar</au><au>Lehrer, Raquel</au><au>Vicente, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><spage>1917</spage><epage>1945</epage><pages>1917-1945</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one the solution exists globally. Additionally, we prove that the ground state solution of the elliptic problem associated to the original problem is unstable. The main goal of this paper is to present a new technique which allows us to consider nonlocal problems and to extend the classical result proved by Shatah (Trans Am Math Soc 290(2):701–710, 1985).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-023-10281-3</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-6404-326X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-7294
ispartof Journal of dynamics and differential equations, 2023-09, Vol.35 (3), p.1917-1945
issn 1040-7294
1572-9222
language eng
recordid cdi_proquest_journals_2850683680
source SpringerNature Journals
subjects Applications of Mathematics
Ground state
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
title Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unstable%20Ground%20State%20and%20Blow%20Up%20Result%20of%20Nonlocal%20Klein%E2%80%93Gordon%20Equations&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Carri%C3%A3o,%20Paulo%20Cesar&rft.date=2023-09-01&rft.volume=35&rft.issue=3&rft.spage=1917&rft.epage=1945&rft.pages=1917-1945&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-023-10281-3&rft_dat=%3Cproquest_cross%3E2850683680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850683680&rft_id=info:pmid/&rfr_iscdi=true