Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations
In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one t...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2023-09, Vol.35 (3), p.1917-1945 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1945 |
---|---|
container_issue | 3 |
container_start_page | 1917 |
container_title | Journal of dynamics and differential equations |
container_volume | 35 |
creator | Carrião, Paulo Cesar Lehrer, Raquel Vicente, André |
description | In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one the solution exists globally. Additionally, we prove that the ground state solution of the elliptic problem associated to the original problem is unstable. The main goal of this paper is to present a new technique which allows us to consider nonlocal problems and to extend the classical result proved by Shatah (Trans Am Math Soc 290(2):701–710, 1985). |
doi_str_mv | 10.1007/s10884-023-10281-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2850683680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850683680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1cf89c8b965253004b80698dd86286be6caa6fcdd591db68d8d7aecaec39361b3</originalsourceid><addsrcrecordid>eNp9kMFKAzEYhIMoWKsv4CngOfon2c0mRy21ilVB7Tlkk6y0rJs22UW8-Q6-oU9itII34YeZw8z88CF0TOGUAlRniYKUBQHGCQUmKeE7aETLihHFGNvNHgogFVPFPjpIaQUASnI1QreLLvWmbj2exTB0Dj_2pvfYZHfRhle8WOMHn4a2x6HBd6FrgzUtvmn9svt8_5iF6EKHp5vB9MvQpUO015g2-aNfHaPF5fRpckXm97PryfmcWE5VT6htpLKyVqJkJQcoaglCSeekYFLUXlhjRGOdKxV1tZBOusp4m48rLmjNx-hku7uOYTP41OtVGGKXX2omSxCSCwk5xbYpG0NK0Td6HZcvJr5pCvobm95i0xmb_sGmeS7xbSnlcPfs49_0P60v7vxwnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850683680</pqid></control><display><type>article</type><title>Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations</title><source>SpringerNature Journals</source><creator>Carrião, Paulo Cesar ; Lehrer, Raquel ; Vicente, André</creator><creatorcontrib>Carrião, Paulo Cesar ; Lehrer, Raquel ; Vicente, André</creatorcontrib><description>In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one the solution exists globally. Additionally, we prove that the ground state solution of the elliptic problem associated to the original problem is unstable. The main goal of this paper is to present a new technique which allows us to consider nonlocal problems and to extend the classical result proved by Shatah (Trans Am Math Soc 290(2):701–710, 1985).</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-023-10281-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Ground state ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Journal of dynamics and differential equations, 2023-09, Vol.35 (3), p.1917-1945</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1cf89c8b965253004b80698dd86286be6caa6fcdd591db68d8d7aecaec39361b3</citedby><cites>FETCH-LOGICAL-c319t-1cf89c8b965253004b80698dd86286be6caa6fcdd591db68d8d7aecaec39361b3</cites><orcidid>0000-0001-6404-326X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-023-10281-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-023-10281-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Carrião, Paulo Cesar</creatorcontrib><creatorcontrib>Lehrer, Raquel</creatorcontrib><creatorcontrib>Vicente, André</creatorcontrib><title>Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one the solution exists globally. Additionally, we prove that the ground state solution of the elliptic problem associated to the original problem is unstable. The main goal of this paper is to present a new technique which allows us to consider nonlocal problems and to extend the classical result proved by Shatah (Trans Am Math Soc 290(2):701–710, 1985).</description><subject>Applications of Mathematics</subject><subject>Ground state</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEYhIMoWKsv4CngOfon2c0mRy21ilVB7Tlkk6y0rJs22UW8-Q6-oU9itII34YeZw8z88CF0TOGUAlRniYKUBQHGCQUmKeE7aETLihHFGNvNHgogFVPFPjpIaQUASnI1QreLLvWmbj2exTB0Dj_2pvfYZHfRhle8WOMHn4a2x6HBd6FrgzUtvmn9svt8_5iF6EKHp5vB9MvQpUO015g2-aNfHaPF5fRpckXm97PryfmcWE5VT6htpLKyVqJkJQcoaglCSeekYFLUXlhjRGOdKxV1tZBOusp4m48rLmjNx-hku7uOYTP41OtVGGKXX2omSxCSCwk5xbYpG0NK0Td6HZcvJr5pCvobm95i0xmb_sGmeS7xbSnlcPfs49_0P60v7vxwnw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Carrião, Paulo Cesar</creator><creator>Lehrer, Raquel</creator><creator>Vicente, André</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6404-326X</orcidid></search><sort><creationdate>20230901</creationdate><title>Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations</title><author>Carrião, Paulo Cesar ; Lehrer, Raquel ; Vicente, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1cf89c8b965253004b80698dd86286be6caa6fcdd591db68d8d7aecaec39361b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Ground state</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrião, Paulo Cesar</creatorcontrib><creatorcontrib>Lehrer, Raquel</creatorcontrib><creatorcontrib>Vicente, André</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrião, Paulo Cesar</au><au>Lehrer, Raquel</au><au>Vicente, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><spage>1917</spage><epage>1945</epage><pages>1917-1945</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>In this paper we study the behaviour of solutions for a nonlocal hyperbolic equation. We use the Pohozaev manifold combined with a new technique to explicit two invariant regions in the space of initial data. On the first one the solution blows up (in finite or infinite time) and in the second one the solution exists globally. Additionally, we prove that the ground state solution of the elliptic problem associated to the original problem is unstable. The main goal of this paper is to present a new technique which allows us to consider nonlocal problems and to extend the classical result proved by Shatah (Trans Am Math Soc 290(2):701–710, 1985).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-023-10281-3</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-6404-326X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7294 |
ispartof | Journal of dynamics and differential equations, 2023-09, Vol.35 (3), p.1917-1945 |
issn | 1040-7294 1572-9222 |
language | eng |
recordid | cdi_proquest_journals_2850683680 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Ground state Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations |
title | Unstable Ground State and Blow Up Result of Nonlocal Klein–Gordon Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unstable%20Ground%20State%20and%20Blow%20Up%20Result%20of%20Nonlocal%20Klein%E2%80%93Gordon%20Equations&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Carri%C3%A3o,%20Paulo%20Cesar&rft.date=2023-09-01&rft.volume=35&rft.issue=3&rft.spage=1917&rft.epage=1945&rft.pages=1917-1945&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-023-10281-3&rft_dat=%3Cproquest_cross%3E2850683680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850683680&rft_id=info:pmid/&rfr_iscdi=true |