A Low-Cost Neural ODE with Depthwise Separable Convolution for Edge Domain Adaptation on FPGAs
High-performance deep neural network (DNN)-based systems are in high demand in edge environments. Due to its high computational complexity, it is challenging to deploy DNNs on edge devices with strict limitations on computational resources. In this paper, we derive a compact while highly-accurate DN...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2023/07/01, Vol.E106.D(7), pp.1186-1197 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1197 |
---|---|
container_issue | 7 |
container_start_page | 1186 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E106.D |
creator | KAWAKAMI, Hiroki WATANABE, Hirohisa SUGIURA, Keisuke MATSUTANI, Hiroki |
description | High-performance deep neural network (DNN)-based systems are in high demand in edge environments. Due to its high computational complexity, it is challenging to deploy DNNs on edge devices with strict limitations on computational resources. In this paper, we derive a compact while highly-accurate DNN model, termed dsODENet, by combining recently-proposed parameter reduction techniques: Neural ODE (Ordinary Differential Equation) and DSC (Depthwise Separable Convolution). Neural ODE exploits a similarity between ResNet and ODE, and shares most of weight parameters among multiple layers, which greatly reduces the memory consumption. We apply dsODENet to a domain adaptation as a practical use case with image classification datasets. We also propose a resource-efficient FPGA-based design for dsODENet, where all the parameters and feature maps except for pre- and post-processing layers can be mapped onto on-chip memories. It is implemented on Xilinx ZCU104 board and evaluated in terms of domain adaptation accuracy, inference speed, FPGA resource utilization, and speedup rate compared to a software counterpart. The results demonstrate that dsODENet achieves comparable or slightly better domain adaptation accuracy compared to our baseline Neural ODE implementation, while the total parameter size without pre- and post-processing layers is reduced by 54.2% to 79.8%. Our FPGA implementation accelerates the inference speed by 23.8 times. |
doi_str_mv | 10.1587/transinf.2022EDP7149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2850468009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850468009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-c71e87e54a66835dd46c8b2008d48ab98ca5e5d1d778cd0fc62a9061984cf54b3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOKffwIeAz51Jm6TpY1m7KQw3_PNqSNN06-iammQOv73VuTm4cC_c8zsHDgC3GI0w5fG9t7J1dVuNQhSGebaIMUnOwADHhAY4YvgcDFCCWcBpFF6CK-fWCGEeYjoA7ymcmV0wNs7DJ721soHzLIe72q9gpju_2tVOwxfdSSuLRsOxaT9Ns_W1aWFlLMzLpYaZ2ci6hWkpOy9_X_1MFtPUXYOLSjZO3_ztIXib5K_jh2A2nz6O01mgCGM-UDHWPNaUSMZ4RMuSMMWLECFeEi6LhCtJNS1xGcdclahSLJQJYjjhRFWUFNEQ3O19O2s-ttp5sTZb2_aRIuQUEcYRSnoV2auUNc5ZXYnO1htpvwRG4qdJcWhSnDTZY897bO28XOojJK2vVaP_oRwjJjIRH44Tk6NYraQVuo2-Af4AhUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850468009</pqid></control><display><type>article</type><title>A Low-Cost Neural ODE with Depthwise Separable Convolution for Edge Domain Adaptation on FPGAs</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>KAWAKAMI, Hiroki ; WATANABE, Hirohisa ; SUGIURA, Keisuke ; MATSUTANI, Hiroki</creator><creatorcontrib>KAWAKAMI, Hiroki ; WATANABE, Hirohisa ; SUGIURA, Keisuke ; MATSUTANI, Hiroki</creatorcontrib><description>High-performance deep neural network (DNN)-based systems are in high demand in edge environments. Due to its high computational complexity, it is challenging to deploy DNNs on edge devices with strict limitations on computational resources. In this paper, we derive a compact while highly-accurate DNN model, termed dsODENet, by combining recently-proposed parameter reduction techniques: Neural ODE (Ordinary Differential Equation) and DSC (Depthwise Separable Convolution). Neural ODE exploits a similarity between ResNet and ODE, and shares most of weight parameters among multiple layers, which greatly reduces the memory consumption. We apply dsODENet to a domain adaptation as a practical use case with image classification datasets. We also propose a resource-efficient FPGA-based design for dsODENet, where all the parameters and feature maps except for pre- and post-processing layers can be mapped onto on-chip memories. It is implemented on Xilinx ZCU104 board and evaluated in terms of domain adaptation accuracy, inference speed, FPGA resource utilization, and speedup rate compared to a software counterpart. The results demonstrate that dsODENet achieves comparable or slightly better domain adaptation accuracy compared to our baseline Neural ODE implementation, while the total parameter size without pre- and post-processing layers is reduced by 54.2% to 79.8%. Our FPGA implementation accelerates the inference speed by 23.8 times.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2022EDP7149</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Accuracy ; Adaptation ; Artificial neural networks ; Convolution ; Differential equations ; distillation ; domain adaptation ; edge device ; Feature maps ; Field programmable gate arrays ; FPGA ; Image classification ; Inference ; neural ODE ; Ordinary differential equations ; Parameters ; Resource utilization</subject><ispartof>IEICE Transactions on Information and Systems, 2023/07/01, Vol.E106.D(7), pp.1186-1197</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-c71e87e54a66835dd46c8b2008d48ab98ca5e5d1d778cd0fc62a9061984cf54b3</citedby><cites>FETCH-LOGICAL-c466t-c71e87e54a66835dd46c8b2008d48ab98ca5e5d1d778cd0fc62a9061984cf54b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>KAWAKAMI, Hiroki</creatorcontrib><creatorcontrib>WATANABE, Hirohisa</creatorcontrib><creatorcontrib>SUGIURA, Keisuke</creatorcontrib><creatorcontrib>MATSUTANI, Hiroki</creatorcontrib><title>A Low-Cost Neural ODE with Depthwise Separable Convolution for Edge Domain Adaptation on FPGAs</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>High-performance deep neural network (DNN)-based systems are in high demand in edge environments. Due to its high computational complexity, it is challenging to deploy DNNs on edge devices with strict limitations on computational resources. In this paper, we derive a compact while highly-accurate DNN model, termed dsODENet, by combining recently-proposed parameter reduction techniques: Neural ODE (Ordinary Differential Equation) and DSC (Depthwise Separable Convolution). Neural ODE exploits a similarity between ResNet and ODE, and shares most of weight parameters among multiple layers, which greatly reduces the memory consumption. We apply dsODENet to a domain adaptation as a practical use case with image classification datasets. We also propose a resource-efficient FPGA-based design for dsODENet, where all the parameters and feature maps except for pre- and post-processing layers can be mapped onto on-chip memories. It is implemented on Xilinx ZCU104 board and evaluated in terms of domain adaptation accuracy, inference speed, FPGA resource utilization, and speedup rate compared to a software counterpart. The results demonstrate that dsODENet achieves comparable or slightly better domain adaptation accuracy compared to our baseline Neural ODE implementation, while the total parameter size without pre- and post-processing layers is reduced by 54.2% to 79.8%. Our FPGA implementation accelerates the inference speed by 23.8 times.</description><subject>Accuracy</subject><subject>Adaptation</subject><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Differential equations</subject><subject>distillation</subject><subject>domain adaptation</subject><subject>edge device</subject><subject>Feature maps</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Image classification</subject><subject>Inference</subject><subject>neural ODE</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Resource utilization</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkF9LwzAUxYMoOKffwIeAz51Jm6TpY1m7KQw3_PNqSNN06-iammQOv73VuTm4cC_c8zsHDgC3GI0w5fG9t7J1dVuNQhSGebaIMUnOwADHhAY4YvgcDFCCWcBpFF6CK-fWCGEeYjoA7ymcmV0wNs7DJ721soHzLIe72q9gpju_2tVOwxfdSSuLRsOxaT9Ns_W1aWFlLMzLpYaZ2ci6hWkpOy9_X_1MFtPUXYOLSjZO3_ztIXib5K_jh2A2nz6O01mgCGM-UDHWPNaUSMZ4RMuSMMWLECFeEi6LhCtJNS1xGcdclahSLJQJYjjhRFWUFNEQ3O19O2s-ttp5sTZb2_aRIuQUEcYRSnoV2auUNc5ZXYnO1htpvwRG4qdJcWhSnDTZY897bO28XOojJK2vVaP_oRwjJjIRH44Tk6NYraQVuo2-Af4AhUc</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>KAWAKAMI, Hiroki</creator><creator>WATANABE, Hirohisa</creator><creator>SUGIURA, Keisuke</creator><creator>MATSUTANI, Hiroki</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230701</creationdate><title>A Low-Cost Neural ODE with Depthwise Separable Convolution for Edge Domain Adaptation on FPGAs</title><author>KAWAKAMI, Hiroki ; WATANABE, Hirohisa ; SUGIURA, Keisuke ; MATSUTANI, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-c71e87e54a66835dd46c8b2008d48ab98ca5e5d1d778cd0fc62a9061984cf54b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adaptation</topic><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Differential equations</topic><topic>distillation</topic><topic>domain adaptation</topic><topic>edge device</topic><topic>Feature maps</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Image classification</topic><topic>Inference</topic><topic>neural ODE</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Resource utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KAWAKAMI, Hiroki</creatorcontrib><creatorcontrib>WATANABE, Hirohisa</creatorcontrib><creatorcontrib>SUGIURA, Keisuke</creatorcontrib><creatorcontrib>MATSUTANI, Hiroki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAWAKAMI, Hiroki</au><au>WATANABE, Hirohisa</au><au>SUGIURA, Keisuke</au><au>MATSUTANI, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low-Cost Neural ODE with Depthwise Separable Convolution for Edge Domain Adaptation on FPGAs</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>E106.D</volume><issue>7</issue><spage>1186</spage><epage>1197</epage><pages>1186-1197</pages><artnum>2022EDP7149</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>High-performance deep neural network (DNN)-based systems are in high demand in edge environments. Due to its high computational complexity, it is challenging to deploy DNNs on edge devices with strict limitations on computational resources. In this paper, we derive a compact while highly-accurate DNN model, termed dsODENet, by combining recently-proposed parameter reduction techniques: Neural ODE (Ordinary Differential Equation) and DSC (Depthwise Separable Convolution). Neural ODE exploits a similarity between ResNet and ODE, and shares most of weight parameters among multiple layers, which greatly reduces the memory consumption. We apply dsODENet to a domain adaptation as a practical use case with image classification datasets. We also propose a resource-efficient FPGA-based design for dsODENet, where all the parameters and feature maps except for pre- and post-processing layers can be mapped onto on-chip memories. It is implemented on Xilinx ZCU104 board and evaluated in terms of domain adaptation accuracy, inference speed, FPGA resource utilization, and speedup rate compared to a software counterpart. The results demonstrate that dsODENet achieves comparable or slightly better domain adaptation accuracy compared to our baseline Neural ODE implementation, while the total parameter size without pre- and post-processing layers is reduced by 54.2% to 79.8%. Our FPGA implementation accelerates the inference speed by 23.8 times.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2022EDP7149</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2023/07/01, Vol.E106.D(7), pp.1186-1197 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2850468009 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Adaptation Artificial neural networks Convolution Differential equations distillation domain adaptation edge device Feature maps Field programmable gate arrays FPGA Image classification Inference neural ODE Ordinary differential equations Parameters Resource utilization |
title | A Low-Cost Neural ODE with Depthwise Separable Convolution for Edge Domain Adaptation on FPGAs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low-Cost%20Neural%20ODE%20with%20Depthwise%20Separable%20Convolution%20for%20Edge%20Domain%20Adaptation%20on%20FPGAs&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=KAWAKAMI,%20Hiroki&rft.date=2023-07-01&rft.volume=E106.D&rft.issue=7&rft.spage=1186&rft.epage=1197&rft.pages=1186-1197&rft.artnum=2022EDP7149&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2022EDP7149&rft_dat=%3Cproquest_cross%3E2850468009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850468009&rft_id=info:pmid/&rfr_iscdi=true |