Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment

To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GPS solutions 2023-10, Vol.27 (4), p.185, Article 185
Hauptverfasser: Wu, Chao, Xie, Jian, Wang, Ling, Su, Mingkun, Shang, Junna, Wang, Haiquan, Sun, Minhong, Li, Yafeng, Luo, Liyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 185
container_title GPS solutions
container_volume 27
creator Wu, Chao
Xie, Jian
Wang, Ling
Su, Mingkun
Shang, Junna
Wang, Haiquan
Sun, Minhong
Li, Yafeng
Luo, Liyan
description To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier transform (FFT)-based method, the single-frequency signal estimation method based on CSP can achieve high-precision frequency estimation with a small number of signal points at a high signal-to-noise ratio (SNR). Compared to the FFT-based method, which uses a search process to estimate frequency parameters, the proposed method directly uses the CSP of the received signal to estimate frequency parameters. However, there are some problems for the method based on this idea. In detail, due to the influence of bit signs and noise on peak detection, adjacent differential processing, coherent integration and coarse initial frequency search processing procedures are adopted to address the detection peak reduction problem. Moreover, the detection performance of the proposed method is analyzed. The simulation results show that the proposed method can achieve the same estimation accuracy with low complexity at a moderate signal-to-noise ratio (SNR) compared with block accumulating semicoherent integration of correlations (BASIC). In particular, when the post-correlation signal SNR is higher than 8 dB, the proposed method can achieve the same chirping rate and initial frequency estimation accuracy as BASIC.
doi_str_mv 10.1007/s10291-023-01523-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2850407508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850407508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e2b7e7885229145a54215646f9d6be77f2b3eaf151948f8ddd742c43b96562ed3</originalsourceid><addsrcrecordid>eNp9UE1PxCAUbIwmrqt_wBOJZ_RBodCj2fiVbPSgngltX7c1banQ9eMf-LNFa_TmBR7zZibMJMkxg1MGoM4CA54zCjylwGQ8xU6yiAOjTOtsN86ggcpUwX5yEMITAIc8F4vkY-1eaen6cTvZqXUDubq9vyejC1NEvcduRkO7GWxHRuttjxN6gmFq-3kXgcZVpLABKxLfU4Pky7HDt19dE5ekHYglTbtpaPU-2L4tCQ4vrXdDj8N0mOzVtgt49HMvk8fLi4fVNV3fXd2szte05AomirxQqLSWPOYV0krBmcxEVudVVqBSNS9StDWTLBe61lVVKcFLkRZ5JjOOVbpMTmbf0bvnbYxhntzWx08Gw7UEAUqCjiw-s0rvQvBYm9HHvP7dMDBfjZu5cRMbN9-NGxFF6SwKkTxs0P9Z_6P6BB6Zhaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850407508</pqid></control><display><type>article</type><title>Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Chao ; Xie, Jian ; Wang, Ling ; Su, Mingkun ; Shang, Junna ; Wang, Haiquan ; Sun, Minhong ; Li, Yafeng ; Luo, Liyan</creator><creatorcontrib>Wu, Chao ; Xie, Jian ; Wang, Ling ; Su, Mingkun ; Shang, Junna ; Wang, Haiquan ; Sun, Minhong ; Li, Yafeng ; Luo, Liyan</creatorcontrib><description>To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier transform (FFT)-based method, the single-frequency signal estimation method based on CSP can achieve high-precision frequency estimation with a small number of signal points at a high signal-to-noise ratio (SNR). Compared to the FFT-based method, which uses a search process to estimate frequency parameters, the proposed method directly uses the CSP of the received signal to estimate frequency parameters. However, there are some problems for the method based on this idea. In detail, due to the influence of bit signs and noise on peak detection, adjacent differential processing, coherent integration and coarse initial frequency search processing procedures are adopted to address the detection peak reduction problem. Moreover, the detection performance of the proposed method is analyzed. The simulation results show that the proposed method can achieve the same estimation accuracy with low complexity at a moderate signal-to-noise ratio (SNR) compared with block accumulating semicoherent integration of correlations (BASIC). In particular, when the post-correlation signal SNR is higher than 8 dB, the proposed method can achieve the same chirping rate and initial frequency estimation accuracy as BASIC.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-023-01523-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Atmospheric Sciences ; Automotive Engineering ; Complexity ; Correlation ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Fast Fourier transformations ; Fourier transforms ; Geophysics/Geodesy ; Global navigation satellite system ; Original Article ; Parameter estimation ; Process parameters ; Search process ; Signal to noise ratio ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>GPS solutions, 2023-10, Vol.27 (4), p.185, Article 185</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e2b7e7885229145a54215646f9d6be77f2b3eaf151948f8ddd742c43b96562ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-023-01523-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-023-01523-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Su, Mingkun</creatorcontrib><creatorcontrib>Shang, Junna</creatorcontrib><creatorcontrib>Wang, Haiquan</creatorcontrib><creatorcontrib>Sun, Minhong</creatorcontrib><creatorcontrib>Li, Yafeng</creatorcontrib><creatorcontrib>Luo, Liyan</creatorcontrib><title>Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier transform (FFT)-based method, the single-frequency signal estimation method based on CSP can achieve high-precision frequency estimation with a small number of signal points at a high signal-to-noise ratio (SNR). Compared to the FFT-based method, which uses a search process to estimate frequency parameters, the proposed method directly uses the CSP of the received signal to estimate frequency parameters. However, there are some problems for the method based on this idea. In detail, due to the influence of bit signs and noise on peak detection, adjacent differential processing, coherent integration and coarse initial frequency search processing procedures are adopted to address the detection peak reduction problem. Moreover, the detection performance of the proposed method is analyzed. The simulation results show that the proposed method can achieve the same estimation accuracy with low complexity at a moderate signal-to-noise ratio (SNR) compared with block accumulating semicoherent integration of correlations (BASIC). In particular, when the post-correlation signal SNR is higher than 8 dB, the proposed method can achieve the same chirping rate and initial frequency estimation accuracy as BASIC.</description><subject>Accuracy</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Geophysics/Geodesy</subject><subject>Global navigation satellite system</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Process parameters</subject><subject>Search process</subject><subject>Signal to noise ratio</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UE1PxCAUbIwmrqt_wBOJZ_RBodCj2fiVbPSgngltX7c1banQ9eMf-LNFa_TmBR7zZibMJMkxg1MGoM4CA54zCjylwGQ8xU6yiAOjTOtsN86ggcpUwX5yEMITAIc8F4vkY-1eaen6cTvZqXUDubq9vyejC1NEvcduRkO7GWxHRuttjxN6gmFq-3kXgcZVpLABKxLfU4Pky7HDt19dE5ekHYglTbtpaPU-2L4tCQ4vrXdDj8N0mOzVtgt49HMvk8fLi4fVNV3fXd2szte05AomirxQqLSWPOYV0krBmcxEVudVVqBSNS9StDWTLBe61lVVKcFLkRZ5JjOOVbpMTmbf0bvnbYxhntzWx08Gw7UEAUqCjiw-s0rvQvBYm9HHvP7dMDBfjZu5cRMbN9-NGxFF6SwKkTxs0P9Z_6P6BB6Zhaw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wu, Chao</creator><creator>Xie, Jian</creator><creator>Wang, Ling</creator><creator>Su, Mingkun</creator><creator>Shang, Junna</creator><creator>Wang, Haiquan</creator><creator>Sun, Minhong</creator><creator>Li, Yafeng</creator><creator>Luo, Liyan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment</title><author>Wu, Chao ; Xie, Jian ; Wang, Ling ; Su, Mingkun ; Shang, Junna ; Wang, Haiquan ; Sun, Minhong ; Li, Yafeng ; Luo, Liyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e2b7e7885229145a54215646f9d6be77f2b3eaf151948f8ddd742c43b96562ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Geophysics/Geodesy</topic><topic>Global navigation satellite system</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Process parameters</topic><topic>Search process</topic><topic>Signal to noise ratio</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Su, Mingkun</creatorcontrib><creatorcontrib>Shang, Junna</creatorcontrib><creatorcontrib>Wang, Haiquan</creatorcontrib><creatorcontrib>Sun, Minhong</creatorcontrib><creatorcontrib>Li, Yafeng</creatorcontrib><creatorcontrib>Luo, Liyan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chao</au><au>Xie, Jian</au><au>Wang, Ling</au><au>Su, Mingkun</au><au>Shang, Junna</au><au>Wang, Haiquan</au><au>Sun, Minhong</au><au>Li, Yafeng</au><au>Luo, Liyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>185</spage><pages>185-</pages><artnum>185</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier transform (FFT)-based method, the single-frequency signal estimation method based on CSP can achieve high-precision frequency estimation with a small number of signal points at a high signal-to-noise ratio (SNR). Compared to the FFT-based method, which uses a search process to estimate frequency parameters, the proposed method directly uses the CSP of the received signal to estimate frequency parameters. However, there are some problems for the method based on this idea. In detail, due to the influence of bit signs and noise on peak detection, adjacent differential processing, coherent integration and coarse initial frequency search processing procedures are adopted to address the detection peak reduction problem. Moreover, the detection performance of the proposed method is analyzed. The simulation results show that the proposed method can achieve the same estimation accuracy with low complexity at a moderate signal-to-noise ratio (SNR) compared with block accumulating semicoherent integration of correlations (BASIC). In particular, when the post-correlation signal SNR is higher than 8 dB, the proposed method can achieve the same chirping rate and initial frequency estimation accuracy as BASIC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-023-01523-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2023-10, Vol.27 (4), p.185, Article 185
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_2850407508
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Atmospheric Sciences
Automotive Engineering
Complexity
Correlation
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Fast Fourier transformations
Fourier transforms
Geophysics/Geodesy
Global navigation satellite system
Original Article
Parameter estimation
Process parameters
Search process
Signal to noise ratio
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
title Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-computation%20GNSS%20post-correlation%20signal%20parameter%20estimation%20method%20based%20on%20the%20complex%20signal%20phase%20in%20a%20high-dynamic%20environment&rft.jtitle=GPS%20solutions&rft.au=Wu,%20Chao&rft.date=2023-10-01&rft.volume=27&rft.issue=4&rft.spage=185&rft.pages=185-&rft.artnum=185&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-023-01523-4&rft_dat=%3Cproquest_cross%3E2850407508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850407508&rft_id=info:pmid/&rfr_iscdi=true