Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment
To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier tra...
Gespeichert in:
Veröffentlicht in: | GPS solutions 2023-10, Vol.27 (4), p.185, Article 185 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 185 |
container_title | GPS solutions |
container_volume | 27 |
creator | Wu, Chao Xie, Jian Wang, Ling Su, Mingkun Shang, Junna Wang, Haiquan Sun, Minhong Li, Yafeng Luo, Liyan |
description | To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier transform (FFT)-based method, the single-frequency signal estimation method based on CSP can achieve high-precision frequency estimation with a small number of signal points at a high signal-to-noise ratio (SNR). Compared to the FFT-based method, which uses a search process to estimate frequency parameters, the proposed method directly uses the CSP of the received signal to estimate frequency parameters. However, there are some problems for the method based on this idea. In detail, due to the influence of bit signs and noise on peak detection, adjacent differential processing, coherent integration and coarse initial frequency search processing procedures are adopted to address the detection peak reduction problem. Moreover, the detection performance of the proposed method is analyzed. The simulation results show that the proposed method can achieve the same estimation accuracy with low complexity at a moderate signal-to-noise ratio (SNR) compared with block accumulating semicoherent integration of correlations (BASIC). In particular, when the post-correlation signal SNR is higher than 8 dB, the proposed method can achieve the same chirping rate and initial frequency estimation accuracy as BASIC. |
doi_str_mv | 10.1007/s10291-023-01523-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2850407508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850407508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e2b7e7885229145a54215646f9d6be77f2b3eaf151948f8ddd742c43b96562ed3</originalsourceid><addsrcrecordid>eNp9UE1PxCAUbIwmrqt_wBOJZ_RBodCj2fiVbPSgngltX7c1banQ9eMf-LNFa_TmBR7zZibMJMkxg1MGoM4CA54zCjylwGQ8xU6yiAOjTOtsN86ggcpUwX5yEMITAIc8F4vkY-1eaen6cTvZqXUDubq9vyejC1NEvcduRkO7GWxHRuttjxN6gmFq-3kXgcZVpLABKxLfU4Pky7HDt19dE5ekHYglTbtpaPU-2L4tCQ4vrXdDj8N0mOzVtgt49HMvk8fLi4fVNV3fXd2szte05AomirxQqLSWPOYV0krBmcxEVudVVqBSNS9StDWTLBe61lVVKcFLkRZ5JjOOVbpMTmbf0bvnbYxhntzWx08Gw7UEAUqCjiw-s0rvQvBYm9HHvP7dMDBfjZu5cRMbN9-NGxFF6SwKkTxs0P9Z_6P6BB6Zhaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850407508</pqid></control><display><type>article</type><title>Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Chao ; Xie, Jian ; Wang, Ling ; Su, Mingkun ; Shang, Junna ; Wang, Haiquan ; Sun, Minhong ; Li, Yafeng ; Luo, Liyan</creator><creatorcontrib>Wu, Chao ; Xie, Jian ; Wang, Ling ; Su, Mingkun ; Shang, Junna ; Wang, Haiquan ; Sun, Minhong ; Li, Yafeng ; Luo, Liyan</creatorcontrib><description>To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier transform (FFT)-based method, the single-frequency signal estimation method based on CSP can achieve high-precision frequency estimation with a small number of signal points at a high signal-to-noise ratio (SNR). Compared to the FFT-based method, which uses a search process to estimate frequency parameters, the proposed method directly uses the CSP of the received signal to estimate frequency parameters. However, there are some problems for the method based on this idea. In detail, due to the influence of bit signs and noise on peak detection, adjacent differential processing, coherent integration and coarse initial frequency search processing procedures are adopted to address the detection peak reduction problem. Moreover, the detection performance of the proposed method is analyzed. The simulation results show that the proposed method can achieve the same estimation accuracy with low complexity at a moderate signal-to-noise ratio (SNR) compared with block accumulating semicoherent integration of correlations (BASIC). In particular, when the post-correlation signal SNR is higher than 8 dB, the proposed method can achieve the same chirping rate and initial frequency estimation accuracy as BASIC.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-023-01523-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Atmospheric Sciences ; Automotive Engineering ; Complexity ; Correlation ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Fast Fourier transformations ; Fourier transforms ; Geophysics/Geodesy ; Global navigation satellite system ; Original Article ; Parameter estimation ; Process parameters ; Search process ; Signal to noise ratio ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>GPS solutions, 2023-10, Vol.27 (4), p.185, Article 185</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e2b7e7885229145a54215646f9d6be77f2b3eaf151948f8ddd742c43b96562ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-023-01523-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-023-01523-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Su, Mingkun</creatorcontrib><creatorcontrib>Shang, Junna</creatorcontrib><creatorcontrib>Wang, Haiquan</creatorcontrib><creatorcontrib>Sun, Minhong</creatorcontrib><creatorcontrib>Li, Yafeng</creatorcontrib><creatorcontrib>Luo, Liyan</creatorcontrib><title>Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier transform (FFT)-based method, the single-frequency signal estimation method based on CSP can achieve high-precision frequency estimation with a small number of signal points at a high signal-to-noise ratio (SNR). Compared to the FFT-based method, which uses a search process to estimate frequency parameters, the proposed method directly uses the CSP of the received signal to estimate frequency parameters. However, there are some problems for the method based on this idea. In detail, due to the influence of bit signs and noise on peak detection, adjacent differential processing, coherent integration and coarse initial frequency search processing procedures are adopted to address the detection peak reduction problem. Moreover, the detection performance of the proposed method is analyzed. The simulation results show that the proposed method can achieve the same estimation accuracy with low complexity at a moderate signal-to-noise ratio (SNR) compared with block accumulating semicoherent integration of correlations (BASIC). In particular, when the post-correlation signal SNR is higher than 8 dB, the proposed method can achieve the same chirping rate and initial frequency estimation accuracy as BASIC.</description><subject>Accuracy</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Geophysics/Geodesy</subject><subject>Global navigation satellite system</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Process parameters</subject><subject>Search process</subject><subject>Signal to noise ratio</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UE1PxCAUbIwmrqt_wBOJZ_RBodCj2fiVbPSgngltX7c1banQ9eMf-LNFa_TmBR7zZibMJMkxg1MGoM4CA54zCjylwGQ8xU6yiAOjTOtsN86ggcpUwX5yEMITAIc8F4vkY-1eaen6cTvZqXUDubq9vyejC1NEvcduRkO7GWxHRuttjxN6gmFq-3kXgcZVpLABKxLfU4Pky7HDt19dE5ekHYglTbtpaPU-2L4tCQ4vrXdDj8N0mOzVtgt49HMvk8fLi4fVNV3fXd2szte05AomirxQqLSWPOYV0krBmcxEVudVVqBSNS9StDWTLBe61lVVKcFLkRZ5JjOOVbpMTmbf0bvnbYxhntzWx08Gw7UEAUqCjiw-s0rvQvBYm9HHvP7dMDBfjZu5cRMbN9-NGxFF6SwKkTxs0P9Z_6P6BB6Zhaw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wu, Chao</creator><creator>Xie, Jian</creator><creator>Wang, Ling</creator><creator>Su, Mingkun</creator><creator>Shang, Junna</creator><creator>Wang, Haiquan</creator><creator>Sun, Minhong</creator><creator>Li, Yafeng</creator><creator>Luo, Liyan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment</title><author>Wu, Chao ; Xie, Jian ; Wang, Ling ; Su, Mingkun ; Shang, Junna ; Wang, Haiquan ; Sun, Minhong ; Li, Yafeng ; Luo, Liyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e2b7e7885229145a54215646f9d6be77f2b3eaf151948f8ddd742c43b96562ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Geophysics/Geodesy</topic><topic>Global navigation satellite system</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Process parameters</topic><topic>Search process</topic><topic>Signal to noise ratio</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Su, Mingkun</creatorcontrib><creatorcontrib>Shang, Junna</creatorcontrib><creatorcontrib>Wang, Haiquan</creatorcontrib><creatorcontrib>Sun, Minhong</creatorcontrib><creatorcontrib>Li, Yafeng</creatorcontrib><creatorcontrib>Luo, Liyan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chao</au><au>Xie, Jian</au><au>Wang, Ling</au><au>Su, Mingkun</au><au>Shang, Junna</au><au>Wang, Haiquan</au><au>Sun, Minhong</au><au>Li, Yafeng</au><au>Luo, Liyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>185</spage><pages>185-</pages><artnum>185</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>To estimate global navigation satellite system (GNSS) post-correlation signal parameters in a highly dynamic environment with low complexity, we propose a GNSS acquisition method based on the complex signal phase (CSP). The proposed method is based on the idea that compared with the fast Fourier transform (FFT)-based method, the single-frequency signal estimation method based on CSP can achieve high-precision frequency estimation with a small number of signal points at a high signal-to-noise ratio (SNR). Compared to the FFT-based method, which uses a search process to estimate frequency parameters, the proposed method directly uses the CSP of the received signal to estimate frequency parameters. However, there are some problems for the method based on this idea. In detail, due to the influence of bit signs and noise on peak detection, adjacent differential processing, coherent integration and coarse initial frequency search processing procedures are adopted to address the detection peak reduction problem. Moreover, the detection performance of the proposed method is analyzed. The simulation results show that the proposed method can achieve the same estimation accuracy with low complexity at a moderate signal-to-noise ratio (SNR) compared with block accumulating semicoherent integration of correlations (BASIC). In particular, when the post-correlation signal SNR is higher than 8 dB, the proposed method can achieve the same chirping rate and initial frequency estimation accuracy as BASIC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-023-01523-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1080-5370 |
ispartof | GPS solutions, 2023-10, Vol.27 (4), p.185, Article 185 |
issn | 1080-5370 1521-1886 |
language | eng |
recordid | cdi_proquest_journals_2850407508 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Atmospheric Sciences Automotive Engineering Complexity Correlation Earth and Environmental Science Earth Sciences Electrical Engineering Fast Fourier transformations Fourier transforms Geophysics/Geodesy Global navigation satellite system Original Article Parameter estimation Process parameters Search process Signal to noise ratio Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
title | Low-computation GNSS post-correlation signal parameter estimation method based on the complex signal phase in a high-dynamic environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-computation%20GNSS%20post-correlation%20signal%20parameter%20estimation%20method%20based%20on%20the%20complex%20signal%20phase%20in%20a%20high-dynamic%20environment&rft.jtitle=GPS%20solutions&rft.au=Wu,%20Chao&rft.date=2023-10-01&rft.volume=27&rft.issue=4&rft.spage=185&rft.pages=185-&rft.artnum=185&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-023-01523-4&rft_dat=%3Cproquest_cross%3E2850407508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850407508&rft_id=info:pmid/&rfr_iscdi=true |