How fast do rumours spread?

We study a rumour propagation model along the lines of \cite{lebensztayn2008disk} as a long-range percolation model on \(\Z\). We begin by showing a sharp phase transition-type behaviour in the sense of exponential decay of the survival time of the rumour cluster in the sub-critical phase. In the su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Rishideep Roy, Saha, Kumarjit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rishideep Roy
Saha, Kumarjit
description We study a rumour propagation model along the lines of \cite{lebensztayn2008disk} as a long-range percolation model on \(\Z\). We begin by showing a sharp phase transition-type behaviour in the sense of exponential decay of the survival time of the rumour cluster in the sub-critical phase. In the super-critical phase, \update{under the assumption that radius of influence r.v. has \(2+\epsilon\) moment finite (for some \(\epsilon>0\))}, we show that the rightmost vertex in the rumour cluster has a deterministic speed in the sense that after appropriate scaling, the location of the rightmost vertex converges a.s.\ to a deterministic positive constant. \update{Under the assumption that radius of influence r.v. has \(4+\epsilon\) moment finite,} we obtain a central limit theorem for appropriately scaled and centred rightmost vertex. Later, we introduce a rumour propagation model with reactivation. For this section, we work with a family of exponentially decaying i.i.d. radius of influence r.v.'s, and we obtain the speed result for the scaled rightmost position of the rumour cluster. Each of these results is novel, in the sense that such properties have never been established before in the context of the rumour propagation model on \(\Z\), to the best of our knowledge.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2850388795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850388795</sourcerecordid><originalsourceid>FETCH-proquest_journals_28503887953</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9sgvV0hLLC5RSMlXKCrNzS8tKlYoLihKTUyx52FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZQOV5QKl4IwtTA2MLC3NLU2PiVAEA3zorGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850388795</pqid></control><display><type>article</type><title>How fast do rumours spread?</title><source>Freely accessible journals*</source><creator>Rishideep Roy ; Saha, Kumarjit</creator><creatorcontrib>Rishideep Roy ; Saha, Kumarjit</creatorcontrib><description>We study a rumour propagation model along the lines of \cite{lebensztayn2008disk} as a long-range percolation model on \(\Z\). We begin by showing a sharp phase transition-type behaviour in the sense of exponential decay of the survival time of the rumour cluster in the sub-critical phase. In the super-critical phase, \update{under the assumption that radius of influence r.v. has \(2+\epsilon\) moment finite (for some \(\epsilon&gt;0\))}, we show that the rightmost vertex in the rumour cluster has a deterministic speed in the sense that after appropriate scaling, the location of the rightmost vertex converges a.s.\ to a deterministic positive constant. \update{Under the assumption that radius of influence r.v. has \(4+\epsilon\) moment finite,} we obtain a central limit theorem for appropriately scaled and centred rightmost vertex. Later, we introduce a rumour propagation model with reactivation. For this section, we work with a family of exponentially decaying i.i.d. radius of influence r.v.'s, and we obtain the speed result for the scaled rightmost position of the rumour cluster. Each of these results is novel, in the sense that such properties have never been established before in the context of the rumour propagation model on \(\Z\), to the best of our knowledge.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Percolation ; Phase transitions ; Propagation</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Rishideep Roy</creatorcontrib><creatorcontrib>Saha, Kumarjit</creatorcontrib><title>How fast do rumours spread?</title><title>arXiv.org</title><description>We study a rumour propagation model along the lines of \cite{lebensztayn2008disk} as a long-range percolation model on \(\Z\). We begin by showing a sharp phase transition-type behaviour in the sense of exponential decay of the survival time of the rumour cluster in the sub-critical phase. In the super-critical phase, \update{under the assumption that radius of influence r.v. has \(2+\epsilon\) moment finite (for some \(\epsilon&gt;0\))}, we show that the rightmost vertex in the rumour cluster has a deterministic speed in the sense that after appropriate scaling, the location of the rightmost vertex converges a.s.\ to a deterministic positive constant. \update{Under the assumption that radius of influence r.v. has \(4+\epsilon\) moment finite,} we obtain a central limit theorem for appropriately scaled and centred rightmost vertex. Later, we introduce a rumour propagation model with reactivation. For this section, we work with a family of exponentially decaying i.i.d. radius of influence r.v.'s, and we obtain the speed result for the scaled rightmost position of the rumour cluster. Each of these results is novel, in the sense that such properties have never been established before in the context of the rumour propagation model on \(\Z\), to the best of our knowledge.</description><subject>Convergence</subject><subject>Percolation</subject><subject>Phase transitions</subject><subject>Propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9sgvV0hLLC5RSMlXKCrNzS8tKlYoLihKTUyx52FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZQOV5QKl4IwtTA2MLC3NLU2PiVAEA3zorGA</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Rishideep Roy</creator><creator>Saha, Kumarjit</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240924</creationdate><title>How fast do rumours spread?</title><author>Rishideep Roy ; Saha, Kumarjit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28503887953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Percolation</topic><topic>Phase transitions</topic><topic>Propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Rishideep Roy</creatorcontrib><creatorcontrib>Saha, Kumarjit</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rishideep Roy</au><au>Saha, Kumarjit</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>How fast do rumours spread?</atitle><jtitle>arXiv.org</jtitle><date>2024-09-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study a rumour propagation model along the lines of \cite{lebensztayn2008disk} as a long-range percolation model on \(\Z\). We begin by showing a sharp phase transition-type behaviour in the sense of exponential decay of the survival time of the rumour cluster in the sub-critical phase. In the super-critical phase, \update{under the assumption that radius of influence r.v. has \(2+\epsilon\) moment finite (for some \(\epsilon&gt;0\))}, we show that the rightmost vertex in the rumour cluster has a deterministic speed in the sense that after appropriate scaling, the location of the rightmost vertex converges a.s.\ to a deterministic positive constant. \update{Under the assumption that radius of influence r.v. has \(4+\epsilon\) moment finite,} we obtain a central limit theorem for appropriately scaled and centred rightmost vertex. Later, we introduce a rumour propagation model with reactivation. For this section, we work with a family of exponentially decaying i.i.d. radius of influence r.v.'s, and we obtain the speed result for the scaled rightmost position of the rumour cluster. Each of these results is novel, in the sense that such properties have never been established before in the context of the rumour propagation model on \(\Z\), to the best of our knowledge.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2850388795
source Freely accessible journals*
subjects Convergence
Percolation
Phase transitions
Propagation
title How fast do rumours spread?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=How%20fast%20do%20rumours%20spread?&rft.jtitle=arXiv.org&rft.au=Rishideep%20Roy&rft.date=2024-09-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2850388795%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850388795&rft_id=info:pmid/&rfr_iscdi=true