Unleashing the Strengths of Unlabeled Data in Pan-cancer Abdominal Organ Quantification: the FLARE22 Challenge

Quantitative organ assessment is an essential step in automated abdominal disease diagnosis and treatment planning. Artificial intelligence (AI) has shown great potential to automatize this process. However, most existing AI algorithms rely on many expert annotations and lack a comprehensive evaluat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Ma, Jun, Zhang, Yao, Gu, Song, Cheng, Ge, Ma, Shihao, Adamo, Young, Zhu, Cheng, Meng, Kangkang, Yang, Xin, Huang, Ziyan, Zhang, Fan, Liu, Wentao, Pan, YuanKe, Huang, Shoujin, Wang, Jiacheng, Sun, Mingze, Xu, Weixin, Jia, Dengqiang, Choi, Jae Won, Alves, Natália, de Wilde, Bram, Koehler, Gregor, Wu, Yajun, Wiesenfarth, Manuel, Zhu, Qiongjie, Dong, Guoqiang, He, Jian, the FLARE Challenge Consortium, Wang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ma, Jun
Zhang, Yao
Gu, Song
Cheng, Ge
Ma, Shihao
Adamo, Young
Zhu, Cheng
Meng, Kangkang
Yang, Xin
Huang, Ziyan
Zhang, Fan
Liu, Wentao
Pan, YuanKe
Huang, Shoujin
Wang, Jiacheng
Sun, Mingze
Xu, Weixin
Jia, Dengqiang
Choi, Jae Won
Alves, Natália
de Wilde, Bram
Koehler, Gregor
Wu, Yajun
Wiesenfarth, Manuel
Zhu, Qiongjie
Dong, Guoqiang
He, Jian
the FLARE Challenge Consortium
Wang, Bo
description Quantitative organ assessment is an essential step in automated abdominal disease diagnosis and treatment planning. Artificial intelligence (AI) has shown great potential to automatize this process. However, most existing AI algorithms rely on many expert annotations and lack a comprehensive evaluation of accuracy and efficiency in real-world multinational settings. To overcome these limitations, we organized the FLARE 2022 Challenge, the largest abdominal organ analysis challenge to date, to benchmark fast, low-resource, accurate, annotation-efficient, and generalized AI algorithms. We constructed an intercontinental and multinational dataset from more than 50 medical groups, including Computed Tomography (CT) scans with different races, diseases, phases, and manufacturers. We independently validated that a set of AI algorithms achieved a median Dice Similarity Coefficient (DSC) of 90.0\% by using 50 labeled scans and 2000 unlabeled scans, which can significantly reduce annotation requirements. The best-performing algorithms successfully generalized to holdout external validation sets, achieving a median DSC of 89.5\%, 90.9\%, and 88.3\% on North American, European, and Asian cohorts, respectively. They also enabled automatic extraction of key organ biology features, which was labor-intensive with traditional manual measurements. This opens the potential to use unlabeled data to boost performance and alleviate annotation shortages for modern AI models.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2850388142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850388142</sourcerecordid><originalsourceid>FETCH-proquest_journals_28503881423</originalsourceid><addsrcrecordid>eNqNzMuKwkAQheFmQJgw-g4Fsw7EaqNhduKFWQjqjK6lTCpJS1ut3Z33N4gP4Oos_sP3oRLUepwWE8RPNQrhkmUZTmeY5zpRchTLFFojDcSW4T96lia2AVwNfaMzW65gSZHACOxI0pKkZA_zc-WuRsjC1jcksO9IoqlNSdE4-Xlq6838b4UIi5as7V0eqkFNNvDotV_qe706LH7Tm3f3jkM8XVznezScsMgzXRTjCer3Xg9sVkhp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850388142</pqid></control><display><type>article</type><title>Unleashing the Strengths of Unlabeled Data in Pan-cancer Abdominal Organ Quantification: the FLARE22 Challenge</title><source>Free E- Journals</source><creator>Ma, Jun ; Zhang, Yao ; Gu, Song ; Cheng, Ge ; Ma, Shihao ; Adamo, Young ; Zhu, Cheng ; Meng, Kangkang ; Yang, Xin ; Huang, Ziyan ; Zhang, Fan ; Liu, Wentao ; Pan, YuanKe ; Huang, Shoujin ; Wang, Jiacheng ; Sun, Mingze ; Xu, Weixin ; Jia, Dengqiang ; Choi, Jae Won ; Alves, Natália ; de Wilde, Bram ; Koehler, Gregor ; Wu, Yajun ; Wiesenfarth, Manuel ; Zhu, Qiongjie ; Dong, Guoqiang ; He, Jian ; the FLARE Challenge Consortium ; Wang, Bo</creator><creatorcontrib>Ma, Jun ; Zhang, Yao ; Gu, Song ; Cheng, Ge ; Ma, Shihao ; Adamo, Young ; Zhu, Cheng ; Meng, Kangkang ; Yang, Xin ; Huang, Ziyan ; Zhang, Fan ; Liu, Wentao ; Pan, YuanKe ; Huang, Shoujin ; Wang, Jiacheng ; Sun, Mingze ; Xu, Weixin ; Jia, Dengqiang ; Choi, Jae Won ; Alves, Natália ; de Wilde, Bram ; Koehler, Gregor ; Wu, Yajun ; Wiesenfarth, Manuel ; Zhu, Qiongjie ; Dong, Guoqiang ; He, Jian ; the FLARE Challenge Consortium ; Wang, Bo</creatorcontrib><description>Quantitative organ assessment is an essential step in automated abdominal disease diagnosis and treatment planning. Artificial intelligence (AI) has shown great potential to automatize this process. However, most existing AI algorithms rely on many expert annotations and lack a comprehensive evaluation of accuracy and efficiency in real-world multinational settings. To overcome these limitations, we organized the FLARE 2022 Challenge, the largest abdominal organ analysis challenge to date, to benchmark fast, low-resource, accurate, annotation-efficient, and generalized AI algorithms. We constructed an intercontinental and multinational dataset from more than 50 medical groups, including Computed Tomography (CT) scans with different races, diseases, phases, and manufacturers. We independently validated that a set of AI algorithms achieved a median Dice Similarity Coefficient (DSC) of 90.0\% by using 50 labeled scans and 2000 unlabeled scans, which can significantly reduce annotation requirements. The best-performing algorithms successfully generalized to holdout external validation sets, achieving a median DSC of 89.5\%, 90.9\%, and 88.3\% on North American, European, and Asian cohorts, respectively. They also enabled automatic extraction of key organ biology features, which was labor-intensive with traditional manual measurements. This opens the potential to use unlabeled data to boost performance and alleviate annotation shortages for modern AI models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Abdomen ; Algorithms ; Annotations ; Artificial intelligence ; Computed tomography</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Gu, Song</creatorcontrib><creatorcontrib>Cheng, Ge</creatorcontrib><creatorcontrib>Ma, Shihao</creatorcontrib><creatorcontrib>Adamo, Young</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Meng, Kangkang</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Huang, Ziyan</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Pan, YuanKe</creatorcontrib><creatorcontrib>Huang, Shoujin</creatorcontrib><creatorcontrib>Wang, Jiacheng</creatorcontrib><creatorcontrib>Sun, Mingze</creatorcontrib><creatorcontrib>Xu, Weixin</creatorcontrib><creatorcontrib>Jia, Dengqiang</creatorcontrib><creatorcontrib>Choi, Jae Won</creatorcontrib><creatorcontrib>Alves, Natália</creatorcontrib><creatorcontrib>de Wilde, Bram</creatorcontrib><creatorcontrib>Koehler, Gregor</creatorcontrib><creatorcontrib>Wu, Yajun</creatorcontrib><creatorcontrib>Wiesenfarth, Manuel</creatorcontrib><creatorcontrib>Zhu, Qiongjie</creatorcontrib><creatorcontrib>Dong, Guoqiang</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>the FLARE Challenge Consortium</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><title>Unleashing the Strengths of Unlabeled Data in Pan-cancer Abdominal Organ Quantification: the FLARE22 Challenge</title><title>arXiv.org</title><description>Quantitative organ assessment is an essential step in automated abdominal disease diagnosis and treatment planning. Artificial intelligence (AI) has shown great potential to automatize this process. However, most existing AI algorithms rely on many expert annotations and lack a comprehensive evaluation of accuracy and efficiency in real-world multinational settings. To overcome these limitations, we organized the FLARE 2022 Challenge, the largest abdominal organ analysis challenge to date, to benchmark fast, low-resource, accurate, annotation-efficient, and generalized AI algorithms. We constructed an intercontinental and multinational dataset from more than 50 medical groups, including Computed Tomography (CT) scans with different races, diseases, phases, and manufacturers. We independently validated that a set of AI algorithms achieved a median Dice Similarity Coefficient (DSC) of 90.0\% by using 50 labeled scans and 2000 unlabeled scans, which can significantly reduce annotation requirements. The best-performing algorithms successfully generalized to holdout external validation sets, achieving a median DSC of 89.5\%, 90.9\%, and 88.3\% on North American, European, and Asian cohorts, respectively. They also enabled automatic extraction of key organ biology features, which was labor-intensive with traditional manual measurements. This opens the potential to use unlabeled data to boost performance and alleviate annotation shortages for modern AI models.</description><subject>Abdomen</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial intelligence</subject><subject>Computed tomography</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzMuKwkAQheFmQJgw-g4Fsw7EaqNhduKFWQjqjK6lTCpJS1ut3Z33N4gP4Oos_sP3oRLUepwWE8RPNQrhkmUZTmeY5zpRchTLFFojDcSW4T96lia2AVwNfaMzW65gSZHACOxI0pKkZA_zc-WuRsjC1jcksO9IoqlNSdE4-Xlq6838b4UIi5as7V0eqkFNNvDotV_qe706LH7Tm3f3jkM8XVznezScsMgzXRTjCer3Xg9sVkhp</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Ma, Jun</creator><creator>Zhang, Yao</creator><creator>Gu, Song</creator><creator>Cheng, Ge</creator><creator>Ma, Shihao</creator><creator>Adamo, Young</creator><creator>Zhu, Cheng</creator><creator>Meng, Kangkang</creator><creator>Yang, Xin</creator><creator>Huang, Ziyan</creator><creator>Zhang, Fan</creator><creator>Liu, Wentao</creator><creator>Pan, YuanKe</creator><creator>Huang, Shoujin</creator><creator>Wang, Jiacheng</creator><creator>Sun, Mingze</creator><creator>Xu, Weixin</creator><creator>Jia, Dengqiang</creator><creator>Choi, Jae Won</creator><creator>Alves, Natália</creator><creator>de Wilde, Bram</creator><creator>Koehler, Gregor</creator><creator>Wu, Yajun</creator><creator>Wiesenfarth, Manuel</creator><creator>Zhu, Qiongjie</creator><creator>Dong, Guoqiang</creator><creator>He, Jian</creator><creator>the FLARE Challenge Consortium</creator><creator>Wang, Bo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230810</creationdate><title>Unleashing the Strengths of Unlabeled Data in Pan-cancer Abdominal Organ Quantification: the FLARE22 Challenge</title><author>Ma, Jun ; Zhang, Yao ; Gu, Song ; Cheng, Ge ; Ma, Shihao ; Adamo, Young ; Zhu, Cheng ; Meng, Kangkang ; Yang, Xin ; Huang, Ziyan ; Zhang, Fan ; Liu, Wentao ; Pan, YuanKe ; Huang, Shoujin ; Wang, Jiacheng ; Sun, Mingze ; Xu, Weixin ; Jia, Dengqiang ; Choi, Jae Won ; Alves, Natália ; de Wilde, Bram ; Koehler, Gregor ; Wu, Yajun ; Wiesenfarth, Manuel ; Zhu, Qiongjie ; Dong, Guoqiang ; He, Jian ; the FLARE Challenge Consortium ; Wang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28503881423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abdomen</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial intelligence</topic><topic>Computed tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Gu, Song</creatorcontrib><creatorcontrib>Cheng, Ge</creatorcontrib><creatorcontrib>Ma, Shihao</creatorcontrib><creatorcontrib>Adamo, Young</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Meng, Kangkang</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Huang, Ziyan</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Pan, YuanKe</creatorcontrib><creatorcontrib>Huang, Shoujin</creatorcontrib><creatorcontrib>Wang, Jiacheng</creatorcontrib><creatorcontrib>Sun, Mingze</creatorcontrib><creatorcontrib>Xu, Weixin</creatorcontrib><creatorcontrib>Jia, Dengqiang</creatorcontrib><creatorcontrib>Choi, Jae Won</creatorcontrib><creatorcontrib>Alves, Natália</creatorcontrib><creatorcontrib>de Wilde, Bram</creatorcontrib><creatorcontrib>Koehler, Gregor</creatorcontrib><creatorcontrib>Wu, Yajun</creatorcontrib><creatorcontrib>Wiesenfarth, Manuel</creatorcontrib><creatorcontrib>Zhu, Qiongjie</creatorcontrib><creatorcontrib>Dong, Guoqiang</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>the FLARE Challenge Consortium</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jun</au><au>Zhang, Yao</au><au>Gu, Song</au><au>Cheng, Ge</au><au>Ma, Shihao</au><au>Adamo, Young</au><au>Zhu, Cheng</au><au>Meng, Kangkang</au><au>Yang, Xin</au><au>Huang, Ziyan</au><au>Zhang, Fan</au><au>Liu, Wentao</au><au>Pan, YuanKe</au><au>Huang, Shoujin</au><au>Wang, Jiacheng</au><au>Sun, Mingze</au><au>Xu, Weixin</au><au>Jia, Dengqiang</au><au>Choi, Jae Won</au><au>Alves, Natália</au><au>de Wilde, Bram</au><au>Koehler, Gregor</au><au>Wu, Yajun</au><au>Wiesenfarth, Manuel</au><au>Zhu, Qiongjie</au><au>Dong, Guoqiang</au><au>He, Jian</au><au>the FLARE Challenge Consortium</au><au>Wang, Bo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unleashing the Strengths of Unlabeled Data in Pan-cancer Abdominal Organ Quantification: the FLARE22 Challenge</atitle><jtitle>arXiv.org</jtitle><date>2023-08-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Quantitative organ assessment is an essential step in automated abdominal disease diagnosis and treatment planning. Artificial intelligence (AI) has shown great potential to automatize this process. However, most existing AI algorithms rely on many expert annotations and lack a comprehensive evaluation of accuracy and efficiency in real-world multinational settings. To overcome these limitations, we organized the FLARE 2022 Challenge, the largest abdominal organ analysis challenge to date, to benchmark fast, low-resource, accurate, annotation-efficient, and generalized AI algorithms. We constructed an intercontinental and multinational dataset from more than 50 medical groups, including Computed Tomography (CT) scans with different races, diseases, phases, and manufacturers. We independently validated that a set of AI algorithms achieved a median Dice Similarity Coefficient (DSC) of 90.0\% by using 50 labeled scans and 2000 unlabeled scans, which can significantly reduce annotation requirements. The best-performing algorithms successfully generalized to holdout external validation sets, achieving a median DSC of 89.5\%, 90.9\%, and 88.3\% on North American, European, and Asian cohorts, respectively. They also enabled automatic extraction of key organ biology features, which was labor-intensive with traditional manual measurements. This opens the potential to use unlabeled data to boost performance and alleviate annotation shortages for modern AI models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2850388142
source Free E- Journals
subjects Abdomen
Algorithms
Annotations
Artificial intelligence
Computed tomography
title Unleashing the Strengths of Unlabeled Data in Pan-cancer Abdominal Organ Quantification: the FLARE22 Challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unleashing%20the%20Strengths%20of%20Unlabeled%20Data%20in%20Pan-cancer%20Abdominal%20Organ%20Quantification:%20the%20FLARE22%20Challenge&rft.jtitle=arXiv.org&rft.au=Ma,%20Jun&rft.date=2023-08-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2850388142%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850388142&rft_id=info:pmid/&rfr_iscdi=true