Doppler Light Detection and Ranging-Aided Inertial Navigation and Trajectory Recovery

A sensor fusion approach to terrain relative navigation is proposed in this paper. Sensor data from Global Position System (GPS), Inertial Navigation System (INS), and Doppler light detection and ranging (LIDAR) provide a relative state estimate through a novel multiplicative extended Kalman filter....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2023-09, Vol.46 (9), p.1689-1707
Hauptverfasser: Weaver Adams, Davis, Peck, Caleb, Majji, Manoranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1707
container_issue 9
container_start_page 1689
container_title Journal of guidance, control, and dynamics
container_volume 46
creator Weaver Adams, Davis
Peck, Caleb
Majji, Manoranjan
description A sensor fusion approach to terrain relative navigation is proposed in this paper. Sensor data from Global Position System (GPS), Inertial Navigation System (INS), and Doppler light detection and ranging (LIDAR) provide a relative state estimate through a novel multiplicative extended Kalman filter. The measurement model of the Doppler LIDAR is derived from first principals and employed by the filter to update the estimates propagated by the GPS/INS data stream. The line-of-sight Doppler velocity measurement provides direct feedback to the velocity states and improves sensitivity to these state estimates. A novel Rauch–Tung–Striebel smoother framework is derived that is compatible with states exhibiting multiplicative error that enables seamless postprocessing of state estimates filtered with a multiplicative extended Kalman filter. This new filter and smoother framework is tested with suborbital flight data from Blue Origin’s New Sheppard ascent and landing missions.
doi_str_mv 10.2514/1.G007318
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2850233042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850233042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-8289d09c3970b67003f4362bf27f4b1108037d3c4cdfe32fb42ebf8faaf1ca343</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKsH_0HAk4etL3nZJnssrdZCUSjtOWSzyZpSN2t2W-i_t9LiaWD4ZgaGkEcGI54z8cJGcwCJTF2RAcsRM1RKXJPBn5flUMAtueu6LQDDMZMDspnFtt25RJeh_urpzPXO9iE21DQVXZmmDk2dTULlKrpoXOqD2dEPcwi1-afWyWxPoZiOdOVsPLh0vCc33uw693DRIdm8va6n79nyc76YTpaZ5Uz2meKqqKCwWEgoxxIAvcAxLz2XXpSMgQKUFVphK--Q-1JwV3rljfHMGhQ4JE_n3jbFn73rer2N-9ScJjVXOXBEEPxEPZ8pm2LXJed1m8K3SUfNQP-9ppm-vIa_kwpeUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850233042</pqid></control><display><type>article</type><title>Doppler Light Detection and Ranging-Aided Inertial Navigation and Trajectory Recovery</title><source>Alma/SFX Local Collection</source><creator>Weaver Adams, Davis ; Peck, Caleb ; Majji, Manoranjan</creator><creatorcontrib>Weaver Adams, Davis ; Peck, Caleb ; Majji, Manoranjan</creatorcontrib><description>A sensor fusion approach to terrain relative navigation is proposed in this paper. Sensor data from Global Position System (GPS), Inertial Navigation System (INS), and Doppler light detection and ranging (LIDAR) provide a relative state estimate through a novel multiplicative extended Kalman filter. The measurement model of the Doppler LIDAR is derived from first principals and employed by the filter to update the estimates propagated by the GPS/INS data stream. The line-of-sight Doppler velocity measurement provides direct feedback to the velocity states and improves sensitivity to these state estimates. A novel Rauch–Tung–Striebel smoother framework is derived that is compatible with states exhibiting multiplicative error that enables seamless postprocessing of state estimates filtered with a multiplicative extended Kalman filter. This new filter and smoother framework is tested with suborbital flight data from Blue Origin’s New Sheppard ascent and landing missions.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G007318</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Accuracy ; Aerospace engineering ; Attitudes ; Data transmission ; Doppler effect ; Estimates ; Extended Kalman filter ; Field programmable gate arrays ; Global positioning systems ; GPS ; Inertial coordinates ; Inertial navigation ; Kinematics ; Lidar ; Localization ; Moon ; Navigation systems ; Satellite navigation systems ; Sensors ; Suborbital flight ; Velocity ; Velocity measurement</subject><ispartof>Journal of guidance, control, and dynamics, 2023-09, Vol.46 (9), p.1689-1707</ispartof><rights>Copyright © 2023 by Davis Adams, Caleb Peck, and Manoranjan Majji. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-8289d09c3970b67003f4362bf27f4b1108037d3c4cdfe32fb42ebf8faaf1ca343</cites><orcidid>0000-0001-8800-5647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Weaver Adams, Davis</creatorcontrib><creatorcontrib>Peck, Caleb</creatorcontrib><creatorcontrib>Majji, Manoranjan</creatorcontrib><title>Doppler Light Detection and Ranging-Aided Inertial Navigation and Trajectory Recovery</title><title>Journal of guidance, control, and dynamics</title><description>A sensor fusion approach to terrain relative navigation is proposed in this paper. Sensor data from Global Position System (GPS), Inertial Navigation System (INS), and Doppler light detection and ranging (LIDAR) provide a relative state estimate through a novel multiplicative extended Kalman filter. The measurement model of the Doppler LIDAR is derived from first principals and employed by the filter to update the estimates propagated by the GPS/INS data stream. The line-of-sight Doppler velocity measurement provides direct feedback to the velocity states and improves sensitivity to these state estimates. A novel Rauch–Tung–Striebel smoother framework is derived that is compatible with states exhibiting multiplicative error that enables seamless postprocessing of state estimates filtered with a multiplicative extended Kalman filter. This new filter and smoother framework is tested with suborbital flight data from Blue Origin’s New Sheppard ascent and landing missions.</description><subject>Accuracy</subject><subject>Aerospace engineering</subject><subject>Attitudes</subject><subject>Data transmission</subject><subject>Doppler effect</subject><subject>Estimates</subject><subject>Extended Kalman filter</subject><subject>Field programmable gate arrays</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Inertial coordinates</subject><subject>Inertial navigation</subject><subject>Kinematics</subject><subject>Lidar</subject><subject>Localization</subject><subject>Moon</subject><subject>Navigation systems</subject><subject>Satellite navigation systems</subject><subject>Sensors</subject><subject>Suborbital flight</subject><subject>Velocity</subject><subject>Velocity measurement</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKsH_0HAk4etL3nZJnssrdZCUSjtOWSzyZpSN2t2W-i_t9LiaWD4ZgaGkEcGI54z8cJGcwCJTF2RAcsRM1RKXJPBn5flUMAtueu6LQDDMZMDspnFtt25RJeh_urpzPXO9iE21DQVXZmmDk2dTULlKrpoXOqD2dEPcwi1-afWyWxPoZiOdOVsPLh0vCc33uw693DRIdm8va6n79nyc76YTpaZ5Uz2meKqqKCwWEgoxxIAvcAxLz2XXpSMgQKUFVphK--Q-1JwV3rljfHMGhQ4JE_n3jbFn73rer2N-9ScJjVXOXBEEPxEPZ8pm2LXJed1m8K3SUfNQP-9ppm-vIa_kwpeUQ</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Weaver Adams, Davis</creator><creator>Peck, Caleb</creator><creator>Majji, Manoranjan</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8800-5647</orcidid></search><sort><creationdate>202309</creationdate><title>Doppler Light Detection and Ranging-Aided Inertial Navigation and Trajectory Recovery</title><author>Weaver Adams, Davis ; Peck, Caleb ; Majji, Manoranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-8289d09c3970b67003f4362bf27f4b1108037d3c4cdfe32fb42ebf8faaf1ca343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Aerospace engineering</topic><topic>Attitudes</topic><topic>Data transmission</topic><topic>Doppler effect</topic><topic>Estimates</topic><topic>Extended Kalman filter</topic><topic>Field programmable gate arrays</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Inertial coordinates</topic><topic>Inertial navigation</topic><topic>Kinematics</topic><topic>Lidar</topic><topic>Localization</topic><topic>Moon</topic><topic>Navigation systems</topic><topic>Satellite navigation systems</topic><topic>Sensors</topic><topic>Suborbital flight</topic><topic>Velocity</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weaver Adams, Davis</creatorcontrib><creatorcontrib>Peck, Caleb</creatorcontrib><creatorcontrib>Majji, Manoranjan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weaver Adams, Davis</au><au>Peck, Caleb</au><au>Majji, Manoranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doppler Light Detection and Ranging-Aided Inertial Navigation and Trajectory Recovery</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2023-09</date><risdate>2023</risdate><volume>46</volume><issue>9</issue><spage>1689</spage><epage>1707</epage><pages>1689-1707</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>A sensor fusion approach to terrain relative navigation is proposed in this paper. Sensor data from Global Position System (GPS), Inertial Navigation System (INS), and Doppler light detection and ranging (LIDAR) provide a relative state estimate through a novel multiplicative extended Kalman filter. The measurement model of the Doppler LIDAR is derived from first principals and employed by the filter to update the estimates propagated by the GPS/INS data stream. The line-of-sight Doppler velocity measurement provides direct feedback to the velocity states and improves sensitivity to these state estimates. A novel Rauch–Tung–Striebel smoother framework is derived that is compatible with states exhibiting multiplicative error that enables seamless postprocessing of state estimates filtered with a multiplicative extended Kalman filter. This new filter and smoother framework is tested with suborbital flight data from Blue Origin’s New Sheppard ascent and landing missions.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G007318</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8800-5647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2023-09, Vol.46 (9), p.1689-1707
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_journals_2850233042
source Alma/SFX Local Collection
subjects Accuracy
Aerospace engineering
Attitudes
Data transmission
Doppler effect
Estimates
Extended Kalman filter
Field programmable gate arrays
Global positioning systems
GPS
Inertial coordinates
Inertial navigation
Kinematics
Lidar
Localization
Moon
Navigation systems
Satellite navigation systems
Sensors
Suborbital flight
Velocity
Velocity measurement
title Doppler Light Detection and Ranging-Aided Inertial Navigation and Trajectory Recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doppler%20Light%20Detection%20and%20Ranging-Aided%20Inertial%20Navigation%20and%20Trajectory%20Recovery&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Weaver%20Adams,%20Davis&rft.date=2023-09&rft.volume=46&rft.issue=9&rft.spage=1689&rft.epage=1707&rft.pages=1689-1707&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G007318&rft_dat=%3Cproquest_cross%3E2850233042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850233042&rft_id=info:pmid/&rfr_iscdi=true