1535-P: Physiological Role of Stress-Activated Neurons in the Paraventricular Hypothalamus

Psychological stimuli that disrupt homeostasis - stressors - lead to acute and chronic metabolic disturbance but the underlying neural circuits are incompletely understood. The paraventricular nucleus of the hypothalamus (PVH) plays a significant role in behavioral, autonomic and hormonal responses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2023-06, Vol.72 (Supplement_1), p.1
Hauptverfasser: ESPINOZA, DIEGO G., ALVARSSON, ALEXANDRA, JIMENEZ GONZALEZ, MARIA, HAMPTON, ROLLIE F., LI, ROSEMARY Y., DEVARAKONDA, KAVYA, CHOUDHURY, JESLYN, WAXMAN, TALIA S., STANLEY, SARAH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Supplement_1
container_start_page 1
container_title Diabetes (New York, N.Y.)
container_volume 72
creator ESPINOZA, DIEGO G.
ALVARSSON, ALEXANDRA
JIMENEZ GONZALEZ, MARIA
HAMPTON, ROLLIE F.
LI, ROSEMARY Y.
DEVARAKONDA, KAVYA
CHOUDHURY, JESLYN
WAXMAN, TALIA S.
STANLEY, SARAH
description Psychological stimuli that disrupt homeostasis - stressors - lead to acute and chronic metabolic disturbance but the underlying neural circuits are incompletely understood. The paraventricular nucleus of the hypothalamus (PVH) plays a significant role in behavioral, autonomic and hormonal responses to stress. The PVH contains multiple cell types including neurons expressing tyrosine hydroxylase (TH). However, the contributions of PVHTH neurons to the acute stress response are largely unknown. We aim to determine the roles of PVHTH neurons in the metabolic and behavioral responses to acute stress. We first generated mice with tdTtomato expression in TH+ neurons (TH-tdTomato) by crossing validated TH-cre mice to mice with cre-dependent expression of tdTomato. Using immunohistochemistry for PVH neuropeptides linked to energy metabolism and stress in TH-Tdtomato mice, we quantified overlap of PVHTH neurons with CRH, oxytocin and vasopressin. We found small fractions of PVHTH neurons co-express CRH, oxytocin and vasopressin suggesting PVHTH neurons are a distinct population. Next, we assessed activation of PVHTH in response to acute stress by examining Fos expression in TH-tdTomato mice. Acute stress significantly increased the number of FOS+ PVHTH neurons. Finally, we examined whether chemogenetic activation of PVHTH neurons mimicked behavioral, hormonal and metabolic adaptations to stress using PVH injection of AAV with cre-dependent hM3DGq-mCherry or mCherry (control) in TH-cre mice. Chemogenetic activation of PVHTH neurons acutely suppressed dark-phase food intake and impaired glucose tolerance without effects on plasma corticosterone or anxiety-like behavior. These findings suggest acute stress may recruit PVHTH neurons to elicit hypophagia and impair glucose tolerance, independent of HPA axis activation and anxiety-like behavior. Future studies using chemogenetic inhibition will determine if PVHTH neurons are required for the full metabolic response to acute stress.
doi_str_mv 10.2337/db23-1535-P
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2849360413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2849360413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643-347731c1b4c0be5ffcbdd59e5d9fc9dfc5a2f3c9ef6b84f56987dddda02bf6093</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKsrXyDgUqL5mUwad6VYKxQdtAtxEzL5sVOmk5pkCn17p9TvLr7N4V44ANwS_EAZE4-2pgwRzjiqzsCISCYRo-LrHIwwJhQRIcUluEppgzEuh4zA94l-gtX6kJrQhp_G6BZ-hNbB4OFnji4lNDW52evsLHxzfQxdgk0H89rBSke9d12OjelbHeHisAt5rVu97dM1uPC6Te7m_4_Bav68mi3Q8v3ldTZdIlMWDLFCCEYMqQuDa8e9N7W1XDpupTfSesM19cxI58t6Unheyomww2lMa19iycbg7lS7i-G3dymrTehjNywqOikkK3FB2EDdnygTQ0rRebWLzVbHgyJYHd2pozt1tKEq9gd2TWK7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849360413</pqid></control><display><type>article</type><title>1535-P: Physiological Role of Stress-Activated Neurons in the Paraventricular Hypothalamus</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>ESPINOZA, DIEGO G. ; ALVARSSON, ALEXANDRA ; JIMENEZ GONZALEZ, MARIA ; HAMPTON, ROLLIE F. ; LI, ROSEMARY Y. ; DEVARAKONDA, KAVYA ; CHOUDHURY, JESLYN ; WAXMAN, TALIA S. ; STANLEY, SARAH</creator><creatorcontrib>ESPINOZA, DIEGO G. ; ALVARSSON, ALEXANDRA ; JIMENEZ GONZALEZ, MARIA ; HAMPTON, ROLLIE F. ; LI, ROSEMARY Y. ; DEVARAKONDA, KAVYA ; CHOUDHURY, JESLYN ; WAXMAN, TALIA S. ; STANLEY, SARAH</creatorcontrib><description>Psychological stimuli that disrupt homeostasis - stressors - lead to acute and chronic metabolic disturbance but the underlying neural circuits are incompletely understood. The paraventricular nucleus of the hypothalamus (PVH) plays a significant role in behavioral, autonomic and hormonal responses to stress. The PVH contains multiple cell types including neurons expressing tyrosine hydroxylase (TH). However, the contributions of PVHTH neurons to the acute stress response are largely unknown. We aim to determine the roles of PVHTH neurons in the metabolic and behavioral responses to acute stress. We first generated mice with tdTtomato expression in TH+ neurons (TH-tdTomato) by crossing validated TH-cre mice to mice with cre-dependent expression of tdTomato. Using immunohistochemistry for PVH neuropeptides linked to energy metabolism and stress in TH-Tdtomato mice, we quantified overlap of PVHTH neurons with CRH, oxytocin and vasopressin. We found small fractions of PVHTH neurons co-express CRH, oxytocin and vasopressin suggesting PVHTH neurons are a distinct population. Next, we assessed activation of PVHTH in response to acute stress by examining Fos expression in TH-tdTomato mice. Acute stress significantly increased the number of FOS+ PVHTH neurons. Finally, we examined whether chemogenetic activation of PVHTH neurons mimicked behavioral, hormonal and metabolic adaptations to stress using PVH injection of AAV with cre-dependent hM3DGq-mCherry or mCherry (control) in TH-cre mice. Chemogenetic activation of PVHTH neurons acutely suppressed dark-phase food intake and impaired glucose tolerance without effects on plasma corticosterone or anxiety-like behavior. These findings suggest acute stress may recruit PVHTH neurons to elicit hypophagia and impair glucose tolerance, independent of HPA axis activation and anxiety-like behavior. Future studies using chemogenetic inhibition will determine if PVHTH neurons are required for the full metabolic response to acute stress.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db23-1535-P</identifier><language>eng</language><publisher>New York: American Diabetes Association</publisher><subject>Anxiety ; Autonomic nervous system ; Behavior ; Corticosterone ; Energy metabolism ; Food intake ; Glucose tolerance ; Homeostasis ; Hormones ; Hypophagia ; Hypothalamic-pituitary-adrenal axis ; Hypothalamus ; Immunohistochemistry ; Metabolic response ; Metabolism ; Neural networks ; Neurons ; Neuropeptides ; Oxytocin ; Paraventricular nucleus ; Stress response ; Tyrosine 3-monooxygenase ; Vasopressin</subject><ispartof>Diabetes (New York, N.Y.), 2023-06, Vol.72 (Supplement_1), p.1</ispartof><rights>Copyright American Diabetes Association Jun 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>ESPINOZA, DIEGO G.</creatorcontrib><creatorcontrib>ALVARSSON, ALEXANDRA</creatorcontrib><creatorcontrib>JIMENEZ GONZALEZ, MARIA</creatorcontrib><creatorcontrib>HAMPTON, ROLLIE F.</creatorcontrib><creatorcontrib>LI, ROSEMARY Y.</creatorcontrib><creatorcontrib>DEVARAKONDA, KAVYA</creatorcontrib><creatorcontrib>CHOUDHURY, JESLYN</creatorcontrib><creatorcontrib>WAXMAN, TALIA S.</creatorcontrib><creatorcontrib>STANLEY, SARAH</creatorcontrib><title>1535-P: Physiological Role of Stress-Activated Neurons in the Paraventricular Hypothalamus</title><title>Diabetes (New York, N.Y.)</title><description>Psychological stimuli that disrupt homeostasis - stressors - lead to acute and chronic metabolic disturbance but the underlying neural circuits are incompletely understood. The paraventricular nucleus of the hypothalamus (PVH) plays a significant role in behavioral, autonomic and hormonal responses to stress. The PVH contains multiple cell types including neurons expressing tyrosine hydroxylase (TH). However, the contributions of PVHTH neurons to the acute stress response are largely unknown. We aim to determine the roles of PVHTH neurons in the metabolic and behavioral responses to acute stress. We first generated mice with tdTtomato expression in TH+ neurons (TH-tdTomato) by crossing validated TH-cre mice to mice with cre-dependent expression of tdTomato. Using immunohistochemistry for PVH neuropeptides linked to energy metabolism and stress in TH-Tdtomato mice, we quantified overlap of PVHTH neurons with CRH, oxytocin and vasopressin. We found small fractions of PVHTH neurons co-express CRH, oxytocin and vasopressin suggesting PVHTH neurons are a distinct population. Next, we assessed activation of PVHTH in response to acute stress by examining Fos expression in TH-tdTomato mice. Acute stress significantly increased the number of FOS+ PVHTH neurons. Finally, we examined whether chemogenetic activation of PVHTH neurons mimicked behavioral, hormonal and metabolic adaptations to stress using PVH injection of AAV with cre-dependent hM3DGq-mCherry or mCherry (control) in TH-cre mice. Chemogenetic activation of PVHTH neurons acutely suppressed dark-phase food intake and impaired glucose tolerance without effects on plasma corticosterone or anxiety-like behavior. These findings suggest acute stress may recruit PVHTH neurons to elicit hypophagia and impair glucose tolerance, independent of HPA axis activation and anxiety-like behavior. Future studies using chemogenetic inhibition will determine if PVHTH neurons are required for the full metabolic response to acute stress.</description><subject>Anxiety</subject><subject>Autonomic nervous system</subject><subject>Behavior</subject><subject>Corticosterone</subject><subject>Energy metabolism</subject><subject>Food intake</subject><subject>Glucose tolerance</subject><subject>Homeostasis</subject><subject>Hormones</subject><subject>Hypophagia</subject><subject>Hypothalamic-pituitary-adrenal axis</subject><subject>Hypothalamus</subject><subject>Immunohistochemistry</subject><subject>Metabolic response</subject><subject>Metabolism</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neuropeptides</subject><subject>Oxytocin</subject><subject>Paraventricular nucleus</subject><subject>Stress response</subject><subject>Tyrosine 3-monooxygenase</subject><subject>Vasopressin</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoWKsrXyDgUqL5mUwad6VYKxQdtAtxEzL5sVOmk5pkCn17p9TvLr7N4V44ANwS_EAZE4-2pgwRzjiqzsCISCYRo-LrHIwwJhQRIcUluEppgzEuh4zA94l-gtX6kJrQhp_G6BZ-hNbB4OFnji4lNDW52evsLHxzfQxdgk0H89rBSke9d12OjelbHeHisAt5rVu97dM1uPC6Te7m_4_Bav68mi3Q8v3ldTZdIlMWDLFCCEYMqQuDa8e9N7W1XDpupTfSesM19cxI58t6Unheyomww2lMa19iycbg7lS7i-G3dymrTehjNywqOikkK3FB2EDdnygTQ0rRebWLzVbHgyJYHd2pozt1tKEq9gd2TWK7</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>ESPINOZA, DIEGO G.</creator><creator>ALVARSSON, ALEXANDRA</creator><creator>JIMENEZ GONZALEZ, MARIA</creator><creator>HAMPTON, ROLLIE F.</creator><creator>LI, ROSEMARY Y.</creator><creator>DEVARAKONDA, KAVYA</creator><creator>CHOUDHURY, JESLYN</creator><creator>WAXMAN, TALIA S.</creator><creator>STANLEY, SARAH</creator><general>American Diabetes Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20230620</creationdate><title>1535-P: Physiological Role of Stress-Activated Neurons in the Paraventricular Hypothalamus</title><author>ESPINOZA, DIEGO G. ; ALVARSSON, ALEXANDRA ; JIMENEZ GONZALEZ, MARIA ; HAMPTON, ROLLIE F. ; LI, ROSEMARY Y. ; DEVARAKONDA, KAVYA ; CHOUDHURY, JESLYN ; WAXMAN, TALIA S. ; STANLEY, SARAH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643-347731c1b4c0be5ffcbdd59e5d9fc9dfc5a2f3c9ef6b84f56987dddda02bf6093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anxiety</topic><topic>Autonomic nervous system</topic><topic>Behavior</topic><topic>Corticosterone</topic><topic>Energy metabolism</topic><topic>Food intake</topic><topic>Glucose tolerance</topic><topic>Homeostasis</topic><topic>Hormones</topic><topic>Hypophagia</topic><topic>Hypothalamic-pituitary-adrenal axis</topic><topic>Hypothalamus</topic><topic>Immunohistochemistry</topic><topic>Metabolic response</topic><topic>Metabolism</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neuropeptides</topic><topic>Oxytocin</topic><topic>Paraventricular nucleus</topic><topic>Stress response</topic><topic>Tyrosine 3-monooxygenase</topic><topic>Vasopressin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ESPINOZA, DIEGO G.</creatorcontrib><creatorcontrib>ALVARSSON, ALEXANDRA</creatorcontrib><creatorcontrib>JIMENEZ GONZALEZ, MARIA</creatorcontrib><creatorcontrib>HAMPTON, ROLLIE F.</creatorcontrib><creatorcontrib>LI, ROSEMARY Y.</creatorcontrib><creatorcontrib>DEVARAKONDA, KAVYA</creatorcontrib><creatorcontrib>CHOUDHURY, JESLYN</creatorcontrib><creatorcontrib>WAXMAN, TALIA S.</creatorcontrib><creatorcontrib>STANLEY, SARAH</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ESPINOZA, DIEGO G.</au><au>ALVARSSON, ALEXANDRA</au><au>JIMENEZ GONZALEZ, MARIA</au><au>HAMPTON, ROLLIE F.</au><au>LI, ROSEMARY Y.</au><au>DEVARAKONDA, KAVYA</au><au>CHOUDHURY, JESLYN</au><au>WAXMAN, TALIA S.</au><au>STANLEY, SARAH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1535-P: Physiological Role of Stress-Activated Neurons in the Paraventricular Hypothalamus</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><date>2023-06-20</date><risdate>2023</risdate><volume>72</volume><issue>Supplement_1</issue><spage>1</spage><pages>1-</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Psychological stimuli that disrupt homeostasis - stressors - lead to acute and chronic metabolic disturbance but the underlying neural circuits are incompletely understood. The paraventricular nucleus of the hypothalamus (PVH) plays a significant role in behavioral, autonomic and hormonal responses to stress. The PVH contains multiple cell types including neurons expressing tyrosine hydroxylase (TH). However, the contributions of PVHTH neurons to the acute stress response are largely unknown. We aim to determine the roles of PVHTH neurons in the metabolic and behavioral responses to acute stress. We first generated mice with tdTtomato expression in TH+ neurons (TH-tdTomato) by crossing validated TH-cre mice to mice with cre-dependent expression of tdTomato. Using immunohistochemistry for PVH neuropeptides linked to energy metabolism and stress in TH-Tdtomato mice, we quantified overlap of PVHTH neurons with CRH, oxytocin and vasopressin. We found small fractions of PVHTH neurons co-express CRH, oxytocin and vasopressin suggesting PVHTH neurons are a distinct population. Next, we assessed activation of PVHTH in response to acute stress by examining Fos expression in TH-tdTomato mice. Acute stress significantly increased the number of FOS+ PVHTH neurons. Finally, we examined whether chemogenetic activation of PVHTH neurons mimicked behavioral, hormonal and metabolic adaptations to stress using PVH injection of AAV with cre-dependent hM3DGq-mCherry or mCherry (control) in TH-cre mice. Chemogenetic activation of PVHTH neurons acutely suppressed dark-phase food intake and impaired glucose tolerance without effects on plasma corticosterone or anxiety-like behavior. These findings suggest acute stress may recruit PVHTH neurons to elicit hypophagia and impair glucose tolerance, independent of HPA axis activation and anxiety-like behavior. Future studies using chemogenetic inhibition will determine if PVHTH neurons are required for the full metabolic response to acute stress.</abstract><cop>New York</cop><pub>American Diabetes Association</pub><doi>10.2337/db23-1535-P</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2023-06, Vol.72 (Supplement_1), p.1
issn 0012-1797
1939-327X
language eng
recordid cdi_proquest_journals_2849360413
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Anxiety
Autonomic nervous system
Behavior
Corticosterone
Energy metabolism
Food intake
Glucose tolerance
Homeostasis
Hormones
Hypophagia
Hypothalamic-pituitary-adrenal axis
Hypothalamus
Immunohistochemistry
Metabolic response
Metabolism
Neural networks
Neurons
Neuropeptides
Oxytocin
Paraventricular nucleus
Stress response
Tyrosine 3-monooxygenase
Vasopressin
title 1535-P: Physiological Role of Stress-Activated Neurons in the Paraventricular Hypothalamus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1535-P:%20Physiological%20Role%20of%20Stress-Activated%20Neurons%20in%20the%20Paraventricular%20Hypothalamus&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=ESPINOZA,%20DIEGO%20G.&rft.date=2023-06-20&rft.volume=72&rft.issue=Supplement_1&rft.spage=1&rft.pages=1-&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db23-1535-P&rft_dat=%3Cproquest_cross%3E2849360413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2849360413&rft_id=info:pmid/&rfr_iscdi=true