112-LB: Proof-of-Concept Testing of an Artificial Intelligence–Based Fully Closed-Loop System in Hospitalized Patients with Diabetes

Objective: Achieving tight glucose control safely and effectively is challenging in the Intensive Care Unit (ICU). We conducted the first-in-human test of an artificial intelligence (AI)-based fully autonomous glucose control system in a simulated ICU setting. Methods: We admitted seven participants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2023-06, Vol.72 (Supplement_1), p.1
Hauptverfasser: ZAHEDI TAJRISHI, FARBOD, DAVIS, GEORGIA M., PEREZ-GUZMAN, MIREYA, GUERRERO ARROYO, LIZDA I., BLANCO, GERARDO, SAM VARGHESE, JITHIN, HIRA ZAHID, SYEDA, DEJOURNETT, JEREMY, DEJOURNETT, LEON, PASQUEL, FRANCISCO J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Supplement_1
container_start_page 1
container_title Diabetes (New York, N.Y.)
container_volume 72
creator ZAHEDI TAJRISHI, FARBOD
DAVIS, GEORGIA M.
PEREZ-GUZMAN, MIREYA
GUERRERO ARROYO, LIZDA I.
BLANCO, GERARDO
SAM VARGHESE, JITHIN
HIRA ZAHID, SYEDA
DEJOURNETT, JEREMY
DEJOURNETT, LEON
PASQUEL, FRANCISCO J.
description Objective: Achieving tight glucose control safely and effectively is challenging in the Intensive Care Unit (ICU). We conducted the first-in-human test of an artificial intelligence (AI)-based fully autonomous glucose control system in a simulated ICU setting. Methods: We admitted seven participants with type1 and type 2 (n=6) diabetes mellitus for 24-hour closed-loop glucose control sessions that included three unannounced meals. The AI-based system uses glucose control software that controls intravenous insulin and glucose infusions based on real-time continuous glucose monitoring derived data from two real-time CGM devices. The primary efficacy endpoint was the percentage of glucose values within the range of 70-180 mg/dL. The primary safety endpoint was the percentage of glucose values < 70 mg/dL. Results: Participants were on average 48±9.7 years-old, 71% female, and BMI 36±7.8 m/kg2. Mean time in the target range (70-180 mg/dl) was 87.8%. Mean time in the hypoglycemic range (< 70 mg/dL) was 0.2%, Figure. No adverse events occurred. Conclusion: This first in-human results show this novel fully autonomous closed-loop glucose control system designed for the ICU setting has the potential to achieve unparalleled glycemic control with minimal risk of hypoglycemia and paves the way for further research in the actual ICU setting.
doi_str_mv 10.2337/db23-112-LB
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2849358295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2849358295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645-1c997606d60f5fce23330b0430a6eb27fecb5baf22c03c0f039c4818ed934b283</originalsourceid><addsrcrecordid>eNotkM1KAzEQx4MoWKsnXyDgUaL52K94s6u1hQUL9uBtyWaTmrLdrEmK1JMnX8A39ElMqczAMMOPmfn_Abgk-IYylt-2DWWIEIqqyREYEc44YjR_PQYjjOOU5Dw_BWferzHGWYwR-D7Qd3DhrNUoZml7qYYAl8oH06-g1VD08N4Fo400ooPzPqiuMysVud-vn4nwqoXTbdftYNnZ2KDK2gG-7HxQG2h6OLN-MEF05jOCCxGM6oOHHya8wQcjGhWUPwcnWnReXfzXMVhOH5flDFXPT_PyvkIyS1JEJOd5_LvNsE61VFEzww1OGBaZamiulWzSRmhKJWYSa8y4TApSqJazpKEFG4Orw9rB2fdtFFiv7db18WJNi4SztKA8jdT1gZLOeu-UrgdnNsLtaoLrvc_13uc6OldXE_YHrIZxfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849358295</pqid></control><display><type>article</type><title>112-LB: Proof-of-Concept Testing of an Artificial Intelligence–Based Fully Closed-Loop System in Hospitalized Patients with Diabetes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>ZAHEDI TAJRISHI, FARBOD ; DAVIS, GEORGIA M. ; PEREZ-GUZMAN, MIREYA ; GUERRERO ARROYO, LIZDA I. ; BLANCO, GERARDO ; SAM VARGHESE, JITHIN ; HIRA ZAHID, SYEDA ; DEJOURNETT, JEREMY ; DEJOURNETT, LEON ; PASQUEL, FRANCISCO J.</creator><creatorcontrib>ZAHEDI TAJRISHI, FARBOD ; DAVIS, GEORGIA M. ; PEREZ-GUZMAN, MIREYA ; GUERRERO ARROYO, LIZDA I. ; BLANCO, GERARDO ; SAM VARGHESE, JITHIN ; HIRA ZAHID, SYEDA ; DEJOURNETT, JEREMY ; DEJOURNETT, LEON ; PASQUEL, FRANCISCO J.</creatorcontrib><description>Objective: Achieving tight glucose control safely and effectively is challenging in the Intensive Care Unit (ICU). We conducted the first-in-human test of an artificial intelligence (AI)-based fully autonomous glucose control system in a simulated ICU setting. Methods: We admitted seven participants with type1 and type 2 (n=6) diabetes mellitus for 24-hour closed-loop glucose control sessions that included three unannounced meals. The AI-based system uses glucose control software that controls intravenous insulin and glucose infusions based on real-time continuous glucose monitoring derived data from two real-time CGM devices. The primary efficacy endpoint was the percentage of glucose values within the range of 70-180 mg/dL. The primary safety endpoint was the percentage of glucose values &lt; 70 mg/dL. Results: Participants were on average 48±9.7 years-old, 71% female, and BMI 36±7.8 m/kg2. Mean time in the target range (70-180 mg/dl) was 87.8%. Mean time in the hypoglycemic range (&lt; 70 mg/dL) was 0.2%, Figure. No adverse events occurred. Conclusion: This first in-human results show this novel fully autonomous closed-loop glucose control system designed for the ICU setting has the potential to achieve unparalleled glycemic control with minimal risk of hypoglycemia and paves the way for further research in the actual ICU setting.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db23-112-LB</identifier><language>eng</language><publisher>New York: American Diabetes Association</publisher><subject>Artificial intelligence ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Glucose ; Glucose monitoring ; Hypoglycemia</subject><ispartof>Diabetes (New York, N.Y.), 2023-06, Vol.72 (Supplement_1), p.1</ispartof><rights>Copyright American Diabetes Association Jun 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>ZAHEDI TAJRISHI, FARBOD</creatorcontrib><creatorcontrib>DAVIS, GEORGIA M.</creatorcontrib><creatorcontrib>PEREZ-GUZMAN, MIREYA</creatorcontrib><creatorcontrib>GUERRERO ARROYO, LIZDA I.</creatorcontrib><creatorcontrib>BLANCO, GERARDO</creatorcontrib><creatorcontrib>SAM VARGHESE, JITHIN</creatorcontrib><creatorcontrib>HIRA ZAHID, SYEDA</creatorcontrib><creatorcontrib>DEJOURNETT, JEREMY</creatorcontrib><creatorcontrib>DEJOURNETT, LEON</creatorcontrib><creatorcontrib>PASQUEL, FRANCISCO J.</creatorcontrib><title>112-LB: Proof-of-Concept Testing of an Artificial Intelligence–Based Fully Closed-Loop System in Hospitalized Patients with Diabetes</title><title>Diabetes (New York, N.Y.)</title><description>Objective: Achieving tight glucose control safely and effectively is challenging in the Intensive Care Unit (ICU). We conducted the first-in-human test of an artificial intelligence (AI)-based fully autonomous glucose control system in a simulated ICU setting. Methods: We admitted seven participants with type1 and type 2 (n=6) diabetes mellitus for 24-hour closed-loop glucose control sessions that included three unannounced meals. The AI-based system uses glucose control software that controls intravenous insulin and glucose infusions based on real-time continuous glucose monitoring derived data from two real-time CGM devices. The primary efficacy endpoint was the percentage of glucose values within the range of 70-180 mg/dL. The primary safety endpoint was the percentage of glucose values &lt; 70 mg/dL. Results: Participants were on average 48±9.7 years-old, 71% female, and BMI 36±7.8 m/kg2. Mean time in the target range (70-180 mg/dl) was 87.8%. Mean time in the hypoglycemic range (&lt; 70 mg/dL) was 0.2%, Figure. No adverse events occurred. Conclusion: This first in-human results show this novel fully autonomous closed-loop glucose control system designed for the ICU setting has the potential to achieve unparalleled glycemic control with minimal risk of hypoglycemia and paves the way for further research in the actual ICU setting.</description><subject>Artificial intelligence</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Glucose</subject><subject>Glucose monitoring</subject><subject>Hypoglycemia</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEQx4MoWKsnXyDgUaL52K94s6u1hQUL9uBtyWaTmrLdrEmK1JMnX8A39ElMqczAMMOPmfn_Abgk-IYylt-2DWWIEIqqyREYEc44YjR_PQYjjOOU5Dw_BWferzHGWYwR-D7Qd3DhrNUoZml7qYYAl8oH06-g1VD08N4Fo400ooPzPqiuMysVud-vn4nwqoXTbdftYNnZ2KDK2gG-7HxQG2h6OLN-MEF05jOCCxGM6oOHHya8wQcjGhWUPwcnWnReXfzXMVhOH5flDFXPT_PyvkIyS1JEJOd5_LvNsE61VFEzww1OGBaZamiulWzSRmhKJWYSa8y4TApSqJazpKEFG4Orw9rB2fdtFFiv7db18WJNi4SztKA8jdT1gZLOeu-UrgdnNsLtaoLrvc_13uc6OldXE_YHrIZxfw</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>ZAHEDI TAJRISHI, FARBOD</creator><creator>DAVIS, GEORGIA M.</creator><creator>PEREZ-GUZMAN, MIREYA</creator><creator>GUERRERO ARROYO, LIZDA I.</creator><creator>BLANCO, GERARDO</creator><creator>SAM VARGHESE, JITHIN</creator><creator>HIRA ZAHID, SYEDA</creator><creator>DEJOURNETT, JEREMY</creator><creator>DEJOURNETT, LEON</creator><creator>PASQUEL, FRANCISCO J.</creator><general>American Diabetes Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20230620</creationdate><title>112-LB: Proof-of-Concept Testing of an Artificial Intelligence–Based Fully Closed-Loop System in Hospitalized Patients with Diabetes</title><author>ZAHEDI TAJRISHI, FARBOD ; DAVIS, GEORGIA M. ; PEREZ-GUZMAN, MIREYA ; GUERRERO ARROYO, LIZDA I. ; BLANCO, GERARDO ; SAM VARGHESE, JITHIN ; HIRA ZAHID, SYEDA ; DEJOURNETT, JEREMY ; DEJOURNETT, LEON ; PASQUEL, FRANCISCO J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645-1c997606d60f5fce23330b0430a6eb27fecb5baf22c03c0f039c4818ed934b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Glucose</topic><topic>Glucose monitoring</topic><topic>Hypoglycemia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZAHEDI TAJRISHI, FARBOD</creatorcontrib><creatorcontrib>DAVIS, GEORGIA M.</creatorcontrib><creatorcontrib>PEREZ-GUZMAN, MIREYA</creatorcontrib><creatorcontrib>GUERRERO ARROYO, LIZDA I.</creatorcontrib><creatorcontrib>BLANCO, GERARDO</creatorcontrib><creatorcontrib>SAM VARGHESE, JITHIN</creatorcontrib><creatorcontrib>HIRA ZAHID, SYEDA</creatorcontrib><creatorcontrib>DEJOURNETT, JEREMY</creatorcontrib><creatorcontrib>DEJOURNETT, LEON</creatorcontrib><creatorcontrib>PASQUEL, FRANCISCO J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZAHEDI TAJRISHI, FARBOD</au><au>DAVIS, GEORGIA M.</au><au>PEREZ-GUZMAN, MIREYA</au><au>GUERRERO ARROYO, LIZDA I.</au><au>BLANCO, GERARDO</au><au>SAM VARGHESE, JITHIN</au><au>HIRA ZAHID, SYEDA</au><au>DEJOURNETT, JEREMY</au><au>DEJOURNETT, LEON</au><au>PASQUEL, FRANCISCO J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>112-LB: Proof-of-Concept Testing of an Artificial Intelligence–Based Fully Closed-Loop System in Hospitalized Patients with Diabetes</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><date>2023-06-20</date><risdate>2023</risdate><volume>72</volume><issue>Supplement_1</issue><spage>1</spage><pages>1-</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Objective: Achieving tight glucose control safely and effectively is challenging in the Intensive Care Unit (ICU). We conducted the first-in-human test of an artificial intelligence (AI)-based fully autonomous glucose control system in a simulated ICU setting. Methods: We admitted seven participants with type1 and type 2 (n=6) diabetes mellitus for 24-hour closed-loop glucose control sessions that included three unannounced meals. The AI-based system uses glucose control software that controls intravenous insulin and glucose infusions based on real-time continuous glucose monitoring derived data from two real-time CGM devices. The primary efficacy endpoint was the percentage of glucose values within the range of 70-180 mg/dL. The primary safety endpoint was the percentage of glucose values &lt; 70 mg/dL. Results: Participants were on average 48±9.7 years-old, 71% female, and BMI 36±7.8 m/kg2. Mean time in the target range (70-180 mg/dl) was 87.8%. Mean time in the hypoglycemic range (&lt; 70 mg/dL) was 0.2%, Figure. No adverse events occurred. Conclusion: This first in-human results show this novel fully autonomous closed-loop glucose control system designed for the ICU setting has the potential to achieve unparalleled glycemic control with minimal risk of hypoglycemia and paves the way for further research in the actual ICU setting.</abstract><cop>New York</cop><pub>American Diabetes Association</pub><doi>10.2337/db23-112-LB</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2023-06, Vol.72 (Supplement_1), p.1
issn 0012-1797
1939-327X
language eng
recordid cdi_proquest_journals_2849358295
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Artificial intelligence
Diabetes
Diabetes mellitus (non-insulin dependent)
Glucose
Glucose monitoring
Hypoglycemia
title 112-LB: Proof-of-Concept Testing of an Artificial Intelligence–Based Fully Closed-Loop System in Hospitalized Patients with Diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T02%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=112-LB:%20Proof-of-Concept%20Testing%20of%20an%20Artificial%20Intelligence%E2%80%93Based%20Fully%20Closed-Loop%20System%20in%20Hospitalized%20Patients%20with%20Diabetes&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=ZAHEDI%20TAJRISHI,%20FARBOD&rft.date=2023-06-20&rft.volume=72&rft.issue=Supplement_1&rft.spage=1&rft.pages=1-&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db23-112-LB&rft_dat=%3Cproquest_cross%3E2849358295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2849358295&rft_id=info:pmid/&rfr_iscdi=true