Random Lift of Set Valued Maps and Applications to Multiagent Dynamics
We introduce an abstract framework for the study of general mean field games and mean field control problems. Given a multiagent system, its macroscopic description is provided by a time-depending probability measure, where at every instant of time the measure of a set represents the fraction of (mi...
Gespeichert in:
Veröffentlicht in: | Set-valued and variational analysis 2023-09, Vol.31 (3), Article 28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Set-valued and variational analysis |
container_volume | 31 |
creator | Capuani, Rossana Marigonda, Antonio Ricciardi, Michele |
description | We introduce an abstract framework for the study of general mean field games and mean field control problems. Given a multiagent system, its macroscopic description is provided by a time-depending probability measure, where at every instant of time the measure of a set represents the fraction of (microscopic) agents contained in it. The trajectories available to each of the microscopic agents are affected also by the overall state of the system. By using a suitable concept of random lift of set valued maps, together with fixed point arguments, we are able to derive properties of the macroscopic description of the system from properties of the set valued map expressing the admissible trajectories for the microscopical agents. The techniques used can be applied to consider a broad class of dependence between the trajectories of the single agent and the state of the system. We apply the results in the case in which the admissible trajectories of the agents are the minimizers of a suitable integral functional depending also from the macroscopic evolution of the system. |
doi_str_mv | 10.1007/s11228-023-00693-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2849339736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2849339736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-f93c95e61ff09191b60fac888a85b307f94a9f55f003280c89c4b9652da2efb83</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwFPA8-ok2UdyLNWq0CL4uoZsNilbtps1yR767Y2u6M3LzMD8H_BD6JLANQGobgIhlPIMKMsASpHmEZoRXlUZFDk5_r0ZO0VnIeySB0CQGVo9q75xe7xubcTO4hcT8bvqRtPgjRoCTl-8GIau1Sq2rg84OrwZu9iqrekjvj30at_qcI5OrOqCufjZc_S2untdPmTrp_vH5WKdaUbymFnBtChMSaxN7YLUJVilOeeKFzWDyopcCVsUFoBRDpoLndeiLGijqLE1Z3N0NeUO3n2MJkS5c6PvU6WkPBeMiYqVSUUnlfYuBG-sHHy7V_4gCcgvXnLiJRMv-c1LQjKxyRSSuN8a_xf9j-sTt0NsNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849339736</pqid></control><display><type>article</type><title>Random Lift of Set Valued Maps and Applications to Multiagent Dynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Capuani, Rossana ; Marigonda, Antonio ; Ricciardi, Michele</creator><creatorcontrib>Capuani, Rossana ; Marigonda, Antonio ; Ricciardi, Michele</creatorcontrib><description>We introduce an abstract framework for the study of general mean field games and mean field control problems. Given a multiagent system, its macroscopic description is provided by a time-depending probability measure, where at every instant of time the measure of a set represents the fraction of (microscopic) agents contained in it. The trajectories available to each of the microscopic agents are affected also by the overall state of the system. By using a suitable concept of random lift of set valued maps, together with fixed point arguments, we are able to derive properties of the macroscopic description of the system from properties of the set valued map expressing the admissible trajectories for the microscopical agents. The techniques used can be applied to consider a broad class of dependence between the trajectories of the single agent and the state of the system. We apply the results in the case in which the admissible trajectories of the agents are the minimizers of a suitable integral functional depending also from the macroscopic evolution of the system.</description><identifier>ISSN: 1877-0533</identifier><identifier>EISSN: 1877-0541</identifier><identifier>DOI: 10.1007/s11228-023-00693-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Multiagent systems ; Optimization ; Time measurement</subject><ispartof>Set-valued and variational analysis, 2023-09, Vol.31 (3), Article 28</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-f93c95e61ff09191b60fac888a85b307f94a9f55f003280c89c4b9652da2efb83</cites><orcidid>0000-0003-3242-7474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11228-023-00693-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11228-023-00693-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Capuani, Rossana</creatorcontrib><creatorcontrib>Marigonda, Antonio</creatorcontrib><creatorcontrib>Ricciardi, Michele</creatorcontrib><title>Random Lift of Set Valued Maps and Applications to Multiagent Dynamics</title><title>Set-valued and variational analysis</title><addtitle>Set-Valued Var. Anal</addtitle><description>We introduce an abstract framework for the study of general mean field games and mean field control problems. Given a multiagent system, its macroscopic description is provided by a time-depending probability measure, where at every instant of time the measure of a set represents the fraction of (microscopic) agents contained in it. The trajectories available to each of the microscopic agents are affected also by the overall state of the system. By using a suitable concept of random lift of set valued maps, together with fixed point arguments, we are able to derive properties of the macroscopic description of the system from properties of the set valued map expressing the admissible trajectories for the microscopical agents. The techniques used can be applied to consider a broad class of dependence between the trajectories of the single agent and the state of the system. We apply the results in the case in which the admissible trajectories of the agents are the minimizers of a suitable integral functional depending also from the macroscopic evolution of the system.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Time measurement</subject><issn>1877-0533</issn><issn>1877-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfwFPA8-ok2UdyLNWq0CL4uoZsNilbtps1yR767Y2u6M3LzMD8H_BD6JLANQGobgIhlPIMKMsASpHmEZoRXlUZFDk5_r0ZO0VnIeySB0CQGVo9q75xe7xubcTO4hcT8bvqRtPgjRoCTl-8GIau1Sq2rg84OrwZu9iqrekjvj30at_qcI5OrOqCufjZc_S2untdPmTrp_vH5WKdaUbymFnBtChMSaxN7YLUJVilOeeKFzWDyopcCVsUFoBRDpoLndeiLGijqLE1Z3N0NeUO3n2MJkS5c6PvU6WkPBeMiYqVSUUnlfYuBG-sHHy7V_4gCcgvXnLiJRMv-c1LQjKxyRSSuN8a_xf9j-sTt0NsNQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Capuani, Rossana</creator><creator>Marigonda, Antonio</creator><creator>Ricciardi, Michele</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3242-7474</orcidid></search><sort><creationdate>20230901</creationdate><title>Random Lift of Set Valued Maps and Applications to Multiagent Dynamics</title><author>Capuani, Rossana ; Marigonda, Antonio ; Ricciardi, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-f93c95e61ff09191b60fac888a85b307f94a9f55f003280c89c4b9652da2efb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capuani, Rossana</creatorcontrib><creatorcontrib>Marigonda, Antonio</creatorcontrib><creatorcontrib>Ricciardi, Michele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Set-valued and variational analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capuani, Rossana</au><au>Marigonda, Antonio</au><au>Ricciardi, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Lift of Set Valued Maps and Applications to Multiagent Dynamics</atitle><jtitle>Set-valued and variational analysis</jtitle><stitle>Set-Valued Var. Anal</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>31</volume><issue>3</issue><artnum>28</artnum><issn>1877-0533</issn><eissn>1877-0541</eissn><abstract>We introduce an abstract framework for the study of general mean field games and mean field control problems. Given a multiagent system, its macroscopic description is provided by a time-depending probability measure, where at every instant of time the measure of a set represents the fraction of (microscopic) agents contained in it. The trajectories available to each of the microscopic agents are affected also by the overall state of the system. By using a suitable concept of random lift of set valued maps, together with fixed point arguments, we are able to derive properties of the macroscopic description of the system from properties of the set valued map expressing the admissible trajectories for the microscopical agents. The techniques used can be applied to consider a broad class of dependence between the trajectories of the single agent and the state of the system. We apply the results in the case in which the admissible trajectories of the agents are the minimizers of a suitable integral functional depending also from the macroscopic evolution of the system.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11228-023-00693-0</doi><orcidid>https://orcid.org/0000-0003-3242-7474</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-0533 |
ispartof | Set-valued and variational analysis, 2023-09, Vol.31 (3), Article 28 |
issn | 1877-0533 1877-0541 |
language | eng |
recordid | cdi_proquest_journals_2849339736 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Mathematics Mathematics and Statistics Multiagent systems Optimization Time measurement |
title | Random Lift of Set Valued Maps and Applications to Multiagent Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Lift%20of%20Set%20Valued%20Maps%20and%20Applications%20to%20Multiagent%20Dynamics&rft.jtitle=Set-valued%20and%20variational%20analysis&rft.au=Capuani,%20Rossana&rft.date=2023-09-01&rft.volume=31&rft.issue=3&rft.artnum=28&rft.issn=1877-0533&rft.eissn=1877-0541&rft_id=info:doi/10.1007/s11228-023-00693-0&rft_dat=%3Cproquest_cross%3E2849339736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2849339736&rft_id=info:pmid/&rfr_iscdi=true |