Effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth: Insights from 2-D numerical modeling

Thermal conductivity plays an important role in the thermochemical evolution of Earth’s mantle. Recent mineral physics studies suggest that the thermal conductivity of the mantle varies with pressure and composition, and this may play an important role in the evolution of the Earth’s mantle. Meanwhi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Earth sciences 2023-08, Vol.66 (8), p.1865-1876
Hauptverfasser: Li, Yang, Zhang, Zhigang, Li, Juan, Shi, Zhidong, Zhao, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1876
container_issue 8
container_start_page 1865
container_title Science China. Earth sciences
container_volume 66
creator Li, Yang
Zhang, Zhigang
Li, Juan
Shi, Zhidong
Zhao, Liang
description Thermal conductivity plays an important role in the thermochemical evolution of Earth’s mantle. Recent mineral physics studies suggest that the thermal conductivity of the mantle varies with pressure and composition, and this may play an important role in the evolution of the Earth’s mantle. Meanwhile, the rheology of the deep mantle is also supposed to be composition-dependent. However, the dynamic influences of these factors remain not well understood. In this study, we performed numerical experiments of thermochemical mantle convection in 2-D spherical annulus geometry to systematically investigate the effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of the large thermochemical structure of primordial material in Earth’s mantle. Our results show that increasing the depth-dependent thermal conductivity leads to a larger core-mantle boundary (CMB) heat flow and allows the formation of more stable large thermochemical piles (e.g., Large Low Shear Velocity Provinces, LLSVPs); while decreasing the composition-dependent thermal conductivity would slightly destabilize the primordial thermochemical piles, increase the altitude of these piles and the temperature differences between the piles and the ambient mantle. If the primordial mantle material is compositionally more viscous (e.g., 20 times than that of the ambient mantle), the long-term stability of the thermochemical piles of primordial material decreases, and this destabilizing effect will be enhanced by decreasing the composition-dependent thermal conductivity. As a result, the thermochemical piles would be unstable in the core-mantle boundary region. Therefore, our study indicates that the combined effects of depth- and composition-dependent thermal conductivity and compositional viscosity ratio are pronounced to the thermochemical evolution of the mantle.
doi_str_mv 10.1007/s11430-022-1111-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2849184716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2849184716</sourcerecordid><originalsourceid>FETCH-LOGICAL-a291t-633339b8778abad7bb5a2b2e78253f7daf00decab09c75d5ed6ddc4e84d8da123</originalsourceid><addsrcrecordid>eNp1UcGO1SAUbYwmTmbmA9yRuEaB9pXWnRmf4ySTzEbXDYXblkkLFegz7-NNvLxqdOPdAOeec-ByiuINZ-84Y_J95LwqGWVCUI5F6xfFFW_qlvKmlS9xX8uKypKXr4vbGJ8ZVokdIa-Kn8dhAJ0i8QMxsKaJEuUM0X5ZfbTJekcRBmfAJZImCIuasevMppM92XS-0LHxrwQpJxt1Pp1JUAgR7y6k2buRJnQhcPLzlsn55lmFEXZ7rydYrEaL1c5wedca7OKDsYgtCsV5Y__4_YCAqEszZGrGjiqk6QN5cNGOE042BL8QQT8Rty0oztaLNzBbN94UrwY1R7j9vV4X3z4fv959oY9P9w93Hx-pEi1PtC6x2r6RslG9MrLvD0r0AmQjDuUgjRoYM6BVz1otD-YApjZGV9BUpjGKi_K6eLv7rsF_3yCm7tlvAf8pdqKpWt5UktfI4jtLBx9jgKHLk6tw7jjrctDdHnSHQXc56C5rxK6JyHUjhL_O_xf9AgyOsvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849184716</pqid></control><display><type>article</type><title>Effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth: Insights from 2-D numerical modeling</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Yang ; Zhang, Zhigang ; Li, Juan ; Shi, Zhidong ; Zhao, Liang</creator><creatorcontrib>Li, Yang ; Zhang, Zhigang ; Li, Juan ; Shi, Zhidong ; Zhao, Liang</creatorcontrib><description>Thermal conductivity plays an important role in the thermochemical evolution of Earth’s mantle. Recent mineral physics studies suggest that the thermal conductivity of the mantle varies with pressure and composition, and this may play an important role in the evolution of the Earth’s mantle. Meanwhile, the rheology of the deep mantle is also supposed to be composition-dependent. However, the dynamic influences of these factors remain not well understood. In this study, we performed numerical experiments of thermochemical mantle convection in 2-D spherical annulus geometry to systematically investigate the effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of the large thermochemical structure of primordial material in Earth’s mantle. Our results show that increasing the depth-dependent thermal conductivity leads to a larger core-mantle boundary (CMB) heat flow and allows the formation of more stable large thermochemical piles (e.g., Large Low Shear Velocity Provinces, LLSVPs); while decreasing the composition-dependent thermal conductivity would slightly destabilize the primordial thermochemical piles, increase the altitude of these piles and the temperature differences between the piles and the ambient mantle. If the primordial mantle material is compositionally more viscous (e.g., 20 times than that of the ambient mantle), the long-term stability of the thermochemical piles of primordial material decreases, and this destabilizing effect will be enhanced by decreasing the composition-dependent thermal conductivity. As a result, the thermochemical piles would be unstable in the core-mantle boundary region. Therefore, our study indicates that the combined effects of depth- and composition-dependent thermal conductivity and compositional viscosity ratio are pronounced to the thermochemical evolution of the mantle.</description><identifier>ISSN: 1674-7313</identifier><identifier>EISSN: 1869-1897</identifier><identifier>DOI: 10.1007/s11430-022-1111-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Composition ; Convection ; Core-mantle boundary ; Depth ; Earth ; Earth and Environmental Science ; Earth mantle ; Earth Sciences ; Evolution ; Heat conductivity ; Heat flow ; Heat transfer ; Heat transmission ; Lower mantle ; Mantle convection ; Numerical experiments ; Numerical models ; Physics ; Piles ; Rheological properties ; Rheology ; Temperature differences ; Temperature gradients ; Thermal conductivity ; Two dimensional models ; Viscosity ; Viscosity ratio</subject><ispartof>Science China. Earth sciences, 2023-08, Vol.66 (8), p.1865-1876</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a291t-633339b8778abad7bb5a2b2e78253f7daf00decab09c75d5ed6ddc4e84d8da123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11430-022-1111-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11430-022-1111-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Zhigang</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Shi, Zhidong</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><title>Effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth: Insights from 2-D numerical modeling</title><title>Science China. Earth sciences</title><addtitle>Sci. China Earth Sci</addtitle><description>Thermal conductivity plays an important role in the thermochemical evolution of Earth’s mantle. Recent mineral physics studies suggest that the thermal conductivity of the mantle varies with pressure and composition, and this may play an important role in the evolution of the Earth’s mantle. Meanwhile, the rheology of the deep mantle is also supposed to be composition-dependent. However, the dynamic influences of these factors remain not well understood. In this study, we performed numerical experiments of thermochemical mantle convection in 2-D spherical annulus geometry to systematically investigate the effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of the large thermochemical structure of primordial material in Earth’s mantle. Our results show that increasing the depth-dependent thermal conductivity leads to a larger core-mantle boundary (CMB) heat flow and allows the formation of more stable large thermochemical piles (e.g., Large Low Shear Velocity Provinces, LLSVPs); while decreasing the composition-dependent thermal conductivity would slightly destabilize the primordial thermochemical piles, increase the altitude of these piles and the temperature differences between the piles and the ambient mantle. If the primordial mantle material is compositionally more viscous (e.g., 20 times than that of the ambient mantle), the long-term stability of the thermochemical piles of primordial material decreases, and this destabilizing effect will be enhanced by decreasing the composition-dependent thermal conductivity. As a result, the thermochemical piles would be unstable in the core-mantle boundary region. Therefore, our study indicates that the combined effects of depth- and composition-dependent thermal conductivity and compositional viscosity ratio are pronounced to the thermochemical evolution of the mantle.</description><subject>Composition</subject><subject>Convection</subject><subject>Core-mantle boundary</subject><subject>Depth</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth mantle</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Heat conductivity</subject><subject>Heat flow</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Lower mantle</subject><subject>Mantle convection</subject><subject>Numerical experiments</subject><subject>Numerical models</subject><subject>Physics</subject><subject>Piles</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Temperature differences</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Two dimensional models</subject><subject>Viscosity</subject><subject>Viscosity ratio</subject><issn>1674-7313</issn><issn>1869-1897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UcGO1SAUbYwmTmbmA9yRuEaB9pXWnRmf4ySTzEbXDYXblkkLFegz7-NNvLxqdOPdAOeec-ByiuINZ-84Y_J95LwqGWVCUI5F6xfFFW_qlvKmlS9xX8uKypKXr4vbGJ8ZVokdIa-Kn8dhAJ0i8QMxsKaJEuUM0X5ZfbTJekcRBmfAJZImCIuasevMppM92XS-0LHxrwQpJxt1Pp1JUAgR7y6k2buRJnQhcPLzlsn55lmFEXZ7rydYrEaL1c5wedca7OKDsYgtCsV5Y__4_YCAqEszZGrGjiqk6QN5cNGOE042BL8QQT8Rty0oztaLNzBbN94UrwY1R7j9vV4X3z4fv959oY9P9w93Hx-pEi1PtC6x2r6RslG9MrLvD0r0AmQjDuUgjRoYM6BVz1otD-YApjZGV9BUpjGKi_K6eLv7rsF_3yCm7tlvAf8pdqKpWt5UktfI4jtLBx9jgKHLk6tw7jjrctDdHnSHQXc56C5rxK6JyHUjhL_O_xf9AgyOsvs</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Li, Yang</creator><creator>Zhang, Zhigang</creator><creator>Li, Juan</creator><creator>Shi, Zhidong</creator><creator>Zhao, Liang</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20230801</creationdate><title>Effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth: Insights from 2-D numerical modeling</title><author>Li, Yang ; Zhang, Zhigang ; Li, Juan ; Shi, Zhidong ; Zhao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a291t-633339b8778abad7bb5a2b2e78253f7daf00decab09c75d5ed6ddc4e84d8da123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composition</topic><topic>Convection</topic><topic>Core-mantle boundary</topic><topic>Depth</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth mantle</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Heat conductivity</topic><topic>Heat flow</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Lower mantle</topic><topic>Mantle convection</topic><topic>Numerical experiments</topic><topic>Numerical models</topic><topic>Physics</topic><topic>Piles</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Temperature differences</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Two dimensional models</topic><topic>Viscosity</topic><topic>Viscosity ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Zhigang</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Shi, Zhidong</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Science China. Earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Zhang, Zhigang</au><au>Li, Juan</au><au>Shi, Zhidong</au><au>Zhao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth: Insights from 2-D numerical modeling</atitle><jtitle>Science China. Earth sciences</jtitle><stitle>Sci. China Earth Sci</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>66</volume><issue>8</issue><spage>1865</spage><epage>1876</epage><pages>1865-1876</pages><issn>1674-7313</issn><eissn>1869-1897</eissn><abstract>Thermal conductivity plays an important role in the thermochemical evolution of Earth’s mantle. Recent mineral physics studies suggest that the thermal conductivity of the mantle varies with pressure and composition, and this may play an important role in the evolution of the Earth’s mantle. Meanwhile, the rheology of the deep mantle is also supposed to be composition-dependent. However, the dynamic influences of these factors remain not well understood. In this study, we performed numerical experiments of thermochemical mantle convection in 2-D spherical annulus geometry to systematically investigate the effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of the large thermochemical structure of primordial material in Earth’s mantle. Our results show that increasing the depth-dependent thermal conductivity leads to a larger core-mantle boundary (CMB) heat flow and allows the formation of more stable large thermochemical piles (e.g., Large Low Shear Velocity Provinces, LLSVPs); while decreasing the composition-dependent thermal conductivity would slightly destabilize the primordial thermochemical piles, increase the altitude of these piles and the temperature differences between the piles and the ambient mantle. If the primordial mantle material is compositionally more viscous (e.g., 20 times than that of the ambient mantle), the long-term stability of the thermochemical piles of primordial material decreases, and this destabilizing effect will be enhanced by decreasing the composition-dependent thermal conductivity. As a result, the thermochemical piles would be unstable in the core-mantle boundary region. Therefore, our study indicates that the combined effects of depth- and composition-dependent thermal conductivity and compositional viscosity ratio are pronounced to the thermochemical evolution of the mantle.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11430-022-1111-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7313
ispartof Science China. Earth sciences, 2023-08, Vol.66 (8), p.1865-1876
issn 1674-7313
1869-1897
language eng
recordid cdi_proquest_journals_2849184716
source SpringerLink Journals; Alma/SFX Local Collection
subjects Composition
Convection
Core-mantle boundary
Depth
Earth
Earth and Environmental Science
Earth mantle
Earth Sciences
Evolution
Heat conductivity
Heat flow
Heat transfer
Heat transmission
Lower mantle
Mantle convection
Numerical experiments
Numerical models
Physics
Piles
Rheological properties
Rheology
Temperature differences
Temperature gradients
Thermal conductivity
Two dimensional models
Viscosity
Viscosity ratio
title Effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth: Insights from 2-D numerical modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20depth-%20and%20composition-dependent%20thermal%20conductivity%20and%20the%20compositional%20viscosity%20ratio%20on%20the%20long-term%20evolution%20of%20large%20thermochemical%20piles%20of%20primordial%20material%20in%20the%20lower%20mantle%20of%20the%20Earth:%20Insights%20from%202-D%20numerical%20modeling&rft.jtitle=Science%20China.%20Earth%20sciences&rft.au=Li,%20Yang&rft.date=2023-08-01&rft.volume=66&rft.issue=8&rft.spage=1865&rft.epage=1876&rft.pages=1865-1876&rft.issn=1674-7313&rft.eissn=1869-1897&rft_id=info:doi/10.1007/s11430-022-1111-6&rft_dat=%3Cproquest_cross%3E2849184716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2849184716&rft_id=info:pmid/&rfr_iscdi=true