On invariants of a map germ from n-space to 2n-space
We consider \(\mathcal{A}\)-finite map germs \(f\) from \((\mathbb{C}^n,0)\) to \((\mathbb{C}^{2n},0)\). First, we show that the number of double points that appears in a stabilization of \(f\), denoted by \(d(f)\), can be calculated as the length of the local ring of the double point set \(D^2(f)\)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nuño-Ballesteros, Juan José Otoniel Nogueira da Silva Tomazella, João Nivaldo |
description | We consider \(\mathcal{A}\)-finite map germs \(f\) from \((\mathbb{C}^n,0)\) to \((\mathbb{C}^{2n},0)\). First, we show that the number of double points that appears in a stabilization of \(f\), denoted by \(d(f)\), can be calculated as the length of the local ring of the double point set \(D^2(f)\) of \(f\), given by the Mond's ideal. In the case where \(n\leq 3\) and \(f\) is quasihomogeneous, we also present a formula to calculate \(d(f)\) in terms of the weights and degrees of \(f\). Finally, we consider an unfolding \(F(x,t) = (f_t(x),t)\) of \(f\) and we find a set of invariants whose constancy in the family \(f_t\) is equivalent to the Whitney equisingularity of \(F\). As an application, we present a formula to calculate the Euler obstruction of the image of \(f\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2849180531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2849180531</sourcerecordid><originalsourceid>FETCH-proquest_journals_28491805313</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_8MA5kLwkGmdR3Fzcy0OS0mKSmqR-vw79AKc7uFuxBpWS3GrEDWtLGYUQeDiiMaph-h5hiB_KA8VaIHkgCDRB73IAn1OAyMtETwc1AS6-Y2tPr-LahVu2v14e5xufcnrPrtRuTHOOv9Sh1SdphVFS_Xd9AcsCM10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849180531</pqid></control><display><type>article</type><title>On invariants of a map germ from n-space to 2n-space</title><source>Free E- Journals</source><creator>Nuño-Ballesteros, Juan José ; Otoniel Nogueira da Silva ; Tomazella, João Nivaldo</creator><creatorcontrib>Nuño-Ballesteros, Juan José ; Otoniel Nogueira da Silva ; Tomazella, João Nivaldo</creatorcontrib><description>We consider \(\mathcal{A}\)-finite map germs \(f\) from \((\mathbb{C}^n,0)\) to \((\mathbb{C}^{2n},0)\). First, we show that the number of double points that appears in a stabilization of \(f\), denoted by \(d(f)\), can be calculated as the length of the local ring of the double point set \(D^2(f)\) of \(f\), given by the Mond's ideal. In the case where \(n\leq 3\) and \(f\) is quasihomogeneous, we also present a formula to calculate \(d(f)\) in terms of the weights and degrees of \(f\). Finally, we consider an unfolding \(F(x,t) = (f_t(x),t)\) of \(f\) and we find a set of invariants whose constancy in the family \(f_t\) is equivalent to the Whitney equisingularity of \(F\). As an application, we present a formula to calculate the Euler obstruction of the image of \(f\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Invariants ; Mathematical analysis</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Nuño-Ballesteros, Juan José</creatorcontrib><creatorcontrib>Otoniel Nogueira da Silva</creatorcontrib><creatorcontrib>Tomazella, João Nivaldo</creatorcontrib><title>On invariants of a map germ from n-space to 2n-space</title><title>arXiv.org</title><description>We consider \(\mathcal{A}\)-finite map germs \(f\) from \((\mathbb{C}^n,0)\) to \((\mathbb{C}^{2n},0)\). First, we show that the number of double points that appears in a stabilization of \(f\), denoted by \(d(f)\), can be calculated as the length of the local ring of the double point set \(D^2(f)\) of \(f\), given by the Mond's ideal. In the case where \(n\leq 3\) and \(f\) is quasihomogeneous, we also present a formula to calculate \(d(f)\) in terms of the weights and degrees of \(f\). Finally, we consider an unfolding \(F(x,t) = (f_t(x),t)\) of \(f\) and we find a set of invariants whose constancy in the family \(f_t\) is equivalent to the Whitney equisingularity of \(F\). As an application, we present a formula to calculate the Euler obstruction of the image of \(f\).</description><subject>Invariants</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAUAIMgWLT_8MA5kLwkGmdR3Fzcy0OS0mKSmqR-vw79AKc7uFuxBpWS3GrEDWtLGYUQeDiiMaph-h5hiB_KA8VaIHkgCDRB73IAn1OAyMtETwc1AS6-Y2tPr-LahVu2v14e5xufcnrPrtRuTHOOv9Sh1SdphVFS_Xd9AcsCM10</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Nuño-Ballesteros, Juan José</creator><creator>Otoniel Nogueira da Silva</creator><creator>Tomazella, João Nivaldo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230810</creationdate><title>On invariants of a map germ from n-space to 2n-space</title><author>Nuño-Ballesteros, Juan José ; Otoniel Nogueira da Silva ; Tomazella, João Nivaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28491805313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Invariants</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Nuño-Ballesteros, Juan José</creatorcontrib><creatorcontrib>Otoniel Nogueira da Silva</creatorcontrib><creatorcontrib>Tomazella, João Nivaldo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nuño-Ballesteros, Juan José</au><au>Otoniel Nogueira da Silva</au><au>Tomazella, João Nivaldo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On invariants of a map germ from n-space to 2n-space</atitle><jtitle>arXiv.org</jtitle><date>2023-08-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider \(\mathcal{A}\)-finite map germs \(f\) from \((\mathbb{C}^n,0)\) to \((\mathbb{C}^{2n},0)\). First, we show that the number of double points that appears in a stabilization of \(f\), denoted by \(d(f)\), can be calculated as the length of the local ring of the double point set \(D^2(f)\) of \(f\), given by the Mond's ideal. In the case where \(n\leq 3\) and \(f\) is quasihomogeneous, we also present a formula to calculate \(d(f)\) in terms of the weights and degrees of \(f\). Finally, we consider an unfolding \(F(x,t) = (f_t(x),t)\) of \(f\) and we find a set of invariants whose constancy in the family \(f_t\) is equivalent to the Whitney equisingularity of \(F\). As an application, we present a formula to calculate the Euler obstruction of the image of \(f\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2849180531 |
source | Free E- Journals |
subjects | Invariants Mathematical analysis |
title | On invariants of a map germ from n-space to 2n-space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20invariants%20of%20a%20map%20germ%20from%20n-space%20to%202n-space&rft.jtitle=arXiv.org&rft.au=Nu%C3%B1o-Ballesteros,%20Juan%20Jos%C3%A9&rft.date=2023-08-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2849180531%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2849180531&rft_id=info:pmid/&rfr_iscdi=true |